Solveeit Logo

Question

Physics Question on mechanical properties of fluid

Two equal drops of water are falling through air with a steady velocity vv. If the drops coalesced what will be the new velocity?

A

(2)13v (2)^{\frac{1}{3}}v

B

(2)32v(2)^{\frac{3}{2}}v

C

(2)23v(2)^{\frac{2}{3}}v

D

(2)14v(2)^{\frac{1}{4}}v

Answer

(2)23v(2)^{\frac{2}{3}}v

Explanation

Solution

Let r be the radius of the each drop. The terminal velocity of drop will be given by v=29r2(ρσ)gηv=\frac {2}{9}\frac{ r^2(\rho - \sigma)g}{ \eta} ....(i) where ρ\rho is density of drop and a is density of viscous medium of coefficient of viscosity η\eta . When two drops each of radius rr coalesce to form a new drop, then the radius of coalesced drop will be R=(2)1/3rR=(2)^{1/3}r Hence, new terminal velocity of coalesced drop will be v=29[(21/3r)2(ρσ)gη]v'=\frac{2}{9}\left[\frac{(2^{1/3}r)^2(\rho - \sigma)g}{\eta}\right] ....(ii) From Eqs. (i) and (ii), we get vv=(2)2/3\frac{v'}{v}=(2)^{2/3} or v=(2)2/3vv'=(2)^{2/3} v