Solveeit Logo

Question

Question: Two equal charges are separated by a distance *d*. A third charge placed on a perpendicular bisector...

Two equal charges are separated by a distance d. A third charge placed on a perpendicular bisector at x distance, will experience maximum coulomb force when

A

x=d2x = \frac{d}{\sqrt{2}}

B

x=d2x = \frac{d}{2}

C

x=d22x = \frac{d}{2\sqrt{2}}

D

x=d23x = \frac{d}{2\sqrt{3}}

Answer

x=d22x = \frac{d}{2\sqrt{2}}

Explanation

Solution

Suppose third charge is similar to Q and it is q

So net force on it Fnet = 2F cosθ

Where F=14πε0.Qq(x2+d24)F = \frac{1}{4\pi\varepsilon_{0}}.\frac{Qq}{\left( x^{2} + \frac{d^{2}}{4} \right)} and cosθ=xx2+d24\cos\theta = \frac{x}{\sqrt{x^{2} + \frac{d^{2}}{4}}}

Fnet=2×14πε0.Qq(x2+d24)×x(x2+d24)1/2F_{net} = 2 \times \frac{1}{4\pi\varepsilon_{0}}.\frac{Qq}{\left( x^{2} + \frac{d^{2}}{4} \right)} \times \frac{x}{\left( x^{2} + \frac{d^{2}}{4} \right)^{1/2}} $$= \frac{2Qqx}{4\pi\varepsilon_{0}\left( x^{2} + \frac{d^{2}}{4} \right)^{3/2}}

for Fnet to be maximum dFnetdx=0\frac{dF_{net}}{dx} = 0 i.e.

\frac{d}{dx}\left\lbrack \frac{2Qqx}{4\pi\varepsilon_{0}\left( x^{2} + \frac{d^{2}}{4} \right)^{3/2}} \right\rbrack = 0

or [(x2+d24)3/23x2(x2+d24)5/2]=0\left\lbrack \left( x^{2} + \frac{d^{2}}{4} \right)^{- 3/2} - 3x^{2}\left( x^{2} + \frac{d^{2}}{4} \right)^{- 5/2} \right\rbrack = 0 i.e. x=±d22x = \pm \frac{d}{2\sqrt{2}}