Solveeit Logo

Question

Question: Two ends of a uniform garland of mass m and length L are hanging vertically as shown. At instant t t...

Two ends of a uniform garland of mass m and length L are hanging vertically as shown. At instant t the end Z is released. If y is the distance moved by this end in time dt, change in momentum of an element of length dy is given as

A

mL\frac { \mathrm { m } } { \mathrm { L } } dy(2gy)1/2 (down ward)

B

mL\frac { \mathrm { m } } { \mathrm { L } } dy (2gy)1/2 (upward)

C
  • mL\frac { \mathrm { m } } { \mathrm { L } } dy dy gy\sqrt { \mathrm { gy } } (upward)
D

mL\frac { \mathrm { m } } { \mathrm { L } } dy(gy)1/2 (upward)

Answer

mL\frac { \mathrm { m } } { \mathrm { L } } dy(gy)1/2 (upward)

Explanation

Solution

Let XO = OZ = L/2. When end Z goes down by y then velocity of bend

v = 2gy2\sqrt { 2 g \frac { y } { 2 } }

because bend falls through y/2.

= - (mLdy)v\left( \frac { \mathrm { m } } { \mathrm { L } } \mathrm { dy } \right) \mathrm { v }

= mLdy- \frac { \mathrm { m } } { \mathrm { L } } \mathrm { dy } (gy)1/2 (downward)

= m/L (gy)1/2 dy (upward)