Solveeit Logo

Question

Question: Two drops of the same radius are falling through air with a steady velocity of 5 cm per sec. If the ...

Two drops of the same radius are falling through air with a steady velocity of 5 cm per sec. If the two drops coalesce, the terminal velocity would be

A

10 cm per sec

B

2.5 cm per sec

C

5×(4)1/3 cm5 \times ( 4 ) ^ { 1 / 3 } \mathrm {~cm} per sec

D

5×2 cm5 \times \sqrt { 2 } \mathrm {~cm} per sec

Answer

5×(4)1/3 cm5 \times ( 4 ) ^ { 1 / 3 } \mathrm {~cm} per sec

Explanation

Solution

If two drops of same radius r coalesce then radius of new drop is given by R

43πR3=43πr3+43πr3\frac { 4 } { 3 } \pi R ^ { 3 } = \frac { 4 } { 3 } \pi r ^ { 3 } + \frac { 4 } { 3 } \pi r ^ { 3 }R3=2r3R=21/3rR ^ { 3 } = 2 r ^ { 3 } \Rightarrow R = 2 ^ { 1 / 3 } r

If drop of radius r is falling in viscous medium then it acquire a critical velocity v and

v2v1=(Rr)2=(21/3rr)2\frac { v _ { 2 } } { v _ { 1 } } = \left( \frac { R } { r } \right) ^ { 2 } = \left( \frac { 2 ^ { 1 / 3 } r } { r } \right) ^ { 2 }

v2=22/3×v1=22/3×(5)=5×(4)1/3 m/sv _ { 2 } = 2 ^ { 2 / 3 } \times v _ { 1 } = 2 ^ { 2 / 3 } \times ( 5 ) = 5 \times ( 4 ) ^ { 1 / 3 } \mathrm {~m} / \mathrm { s }