Solveeit Logo

Question

Physics Question on rotational motion

Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω1\omega_1 and ω2\omega_2 . They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is:-

A

14I(ω1ω2)2\frac{1}{4} I (\omega_1 - \omega_2)^2

B

I(ω1ω2)2I (\omega_1 - \omega_2)^2

C

18I(ω1ω2)2\frac{1}{8} I (\omega_1 - \omega_2)^2

D

12I(ω1+ω2)2\frac{1}{2} I (\omega_1+ \omega_2)^2

Answer

14I(ω1ω2)2\frac{1}{4} I (\omega_1 - \omega_2)^2

Explanation

Solution

ΔKE=12I1I2I1+I2(ω1ω2)2\Delta KE =\frac{1}{2} \frac{I_{1} I_{2}}{I_{1}+I_{2}}\left(\omega_{1}-\omega_{2}\right)^{2}
=12I2(2I)(ω1ω2)2=\frac{1}{2} \frac{I^{2}}{(2 I)}\left(\omega_{1}-\omega_{2}\right)^{2}
=14l(ω1ω2)2=\frac{1}{4} l\left(\omega_{1}-\omega_{2}\right)^{2}