Solveeit Logo

Question

Question: Two discs of moments of inertia <img src="https://cdn.pureessence.tech/canvas_245.png?top_left_x=996...

Two discs of moments of inertia and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω1\omega _ { 1 } and ω2\omega _ { 2 } are brought into contact face to face with their axes of rotation coincident.

What is the loss in kinetic energy of the system in the process?

A
B
C
D
Answer
Explanation

Solution

Let the moment of inertial of disc I be and the angular speed of disc I be ω1\omega _ { 1 } .

let the moment of inertia of disc II be I2\mathrm { I } _ { 2 } and the angular speed of disc II be ω2\omega _ { 2 }

Angular momentum of disc I be L1=I1ω1\mathrm { L } _ { 1 } = \mathrm { I } _ { 1 } \omega _ { 1 }

and angular momentum of disc II be

\therefore The initial angular momentum of two discsis given by Li=I1ω1+I2ω2\mathrm { L } _ { \mathrm { i } } = \mathrm { I } _ { 1 } \omega _ { 1 } + \mathrm { I } _ { 2 } \omega _ { 2 }

When two discs are brought into contact face to face (one on top of other) and their axis of rotation coincide, the moment of inertia I of the system is equal to the sum of their individual moments of inertia.

i.e., I = I1+I2\mathrm { I } _ { 1 } + \mathrm { I } _ { 2 }

let ω\omega be the final angular speed of the system.

\therefore The final angular momentum of the system is given by.

According to law of conservation of angular momentum, we get

I1ω1+I2ω2=(I1+I2)ω\mathrm { I } _ { 1 } \omega _ { 1 } + \mathrm { I } _ { 2 } \omega _ { 2 } = \left( \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } \right) \omega

ω=I1ω1+I2ω2I1+I2\omega = \frac { I _ { 1 } \omega _ { 1 } + I _ { 2 } \omega _ { 2 } } { I _ { 1 } + I _ { 2 } } …(i)

Kinetic energy of disc I is given by,

K1=12I1ω12K _ { 1 } = \frac { 1 } { 2 } I _ { 1 } \omega _ { 1 } ^ { 2 }

Kinetic energy of disc II is given by,

K2=12I2ω22\mathrm { K } _ { 2 } = \frac { 1 } { 2 } \mathrm { I } _ { 2 } \omega _ { 2 } ^ { 2 }

\therefore Initial kinetic energy of two discs is

Final kinetic energy of the system is,

=12(I1+I2)(I1ω1+I2ω2I1+I2)= \frac { 1 } { 2 } \left( \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } \right) \left( \frac { \mathrm { I } _ { 1 } \omega _ { 1 } + \mathrm { I } _ { 2 } \omega _ { 2 } } { \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } } \right) (Using (i))

Loss in kinetic energy of the system.

=12(I1ω12+I2ω22)(I1ω1+I2ω2)22(I1+I2)= \frac { 1 } { 2 } \left( \mathrm { I } _ { 1 } \omega _ { 1 } ^ { 2 } + \mathrm { I } _ { 2 } \omega _ { 2 } ^ { 2 } \right) - \frac { \left( \mathrm { I } _ { 1 } \omega _ { 1 } + \mathrm { I } _ { 2 } \omega _ { 2 } \right) ^ { 2 } } { 2 \left( \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } \right) } =12I1ω12+12I2ω2212I12ω12(I1+I2)= \frac { 1 } { 2 } \mathrm { I } _ { 1 } \omega _ { 1 } ^ { 2 } + \frac { 1 } { 2 } \mathrm { I } _ { 2 } \omega _ { 2 } ^ { 2 } - \frac { 1 } { 2 } \frac { \mathrm { I } _ { 1 } ^ { 2 } \omega _ { 1 } ^ { 2 } } { \left( \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } \right) }

]

(ω12+ω222ω1ω2)\left( \omega _ { 1 } ^ { 2 } + \omega _ { 2 } ^ { 2 } - 2 \omega _ { 1 } \omega _ { 2 } \right)