Solveeit Logo

Question

Question: Two discs of moments of inertia *I1* and *I2* about their respective axes, rotating with angular fre...

Two discs of moments of inertia I1 and I2 about their respective axes, rotating with angular frequencies ω1\omega _ { 1 }and ω2\omega _ { 2 }respectively, are brought into contact face to face with their axes of rotation coincident. The angular frequency of the composite disc will be

A
B
C
D
Answer
Explanation

Solution

Total initial angular momentum of the two discs is Li=I1ω1+I2ω2\mathrm { L } _ { \mathrm { i } } = \mathrm { I } _ { 1 } \omega _ { 1 } + \mathrm { I } _ { 2 } \omega _ { 2 }

When two discs are brought into contact face to face (one on top of the other) and their axes of rotation coincide, the moment of inertia I of the system is equal to the sum of their individual moments of inertia. i.e., I=I1+I2\mathrm { I } = \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 }

Let ω\omega be the final angular speed of the system.

The final angular momentum of the system is

Lf=Iω=(I1+I2)ω\mathrm { L } _ { \mathrm { f } } = \mathrm { I } \omega = \left( \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } \right) \omega

As no external torque acts on the system, therefore according to law of conservation of angular momentum, we get

I1ω1+I2ω2=(I1+I2)ω\mathrm { I } _ { 1 } \omega _ { 1 } + \mathrm { I } _ { 2 } \omega _ { 2 } = \left( \mathrm { I } _ { 1 } + \mathrm { I } _ { 2 } \right) \omega