Solveeit Logo

Question

Physics Question on rotational motion

Two discs of moments of inertia I1I_1 and I2I_2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω1\omega_1 and ω2\omega_2 are brought into contact face to face with their axes of rotation coinciding with each other. What is the loss in kinetic energy of the system in the process?

A

I1I2(ω1ω2)22(I1I2)\frac{I_{1}I_{2}\left(\omega_{1} -\omega_{2}\right)^{2}}{2\left(I_{1}-I_{2}\right)}

B

I1I2(ω1ω2)2(I1+I2)\frac{I_{1}I_{2}\left(\omega_{1} -\omega_{2}\right)^{2}}{\left(I_{1}+I_{2}\right)}

C

I1I2(ω1+ω2)2(I1I2)\frac{I_{1}I_{2}\left(\omega_{1} +\omega_{2}\right)^{2}}{\left(I_{1}-I_{2}\right)}

D

I1I2(ω1+ω2)22(I1I2)\frac{I_{1}I_{2}\left(\omega_{1} +\omega_{2}\right)^{2}}{2\left(I_{1}-I_{2}\right)}

Answer

I1I2(ω1ω2)22(I1I2)\frac{I_{1}I_{2}\left(\omega_{1} -\omega_{2}\right)^{2}}{2\left(I_{1}-I_{2}\right)}

Explanation

Solution

Let the moment of inertia of disc II be I1I_1 and the angular speed of disc II be ω1\omega_1. Let the moment of inertia of disc IIII be I2I_2 and the angular speed of disc IIII be ω2\omega_2. Angular momentum of disc II be L1=I1ω1L _1 = I_1 \omega_1 and angular momentum of disc IIII be L2=I2ω2L_2= I_2\omega_2. \therefore The initial angular momentum of two discs is given by Li=I1ω1+I2ω2L_i = I_1 \omega_1 + I_2 \omega_2 When two discs are brought into contact face to face (one on top of other) and their axis of rotation coincide, the moment of inertia II of the system is equal to the sum of their individual moments of inertia i.e., I=I1+I2I = I_1 + I_2. Let ω\omega be the final angular speed of the system. \therefore The final angular momentum of the system is given by Lf=(I1+I2)ωL_f = (I_1 +I_2)\omega According to law of conservation of angular momentum, Li=LfL_i =L_f I1ω1+I2ω2=(I1+I2)ω I_1 \omega _1 + I_2 \omega_2 = (I_1+I_2)\omega ω=I1ω1+I2ω2I1+I2...(i) \omega = \frac{I_1 \omega _1 + I_2 \omega_2 }{I_1 +I_2 } \quad ...(i) Kinetic energy of disc II is given by K1=12I1ω12K_1 = \frac{1}{2} I_1\omega_1^2 Kinetic energy of disc IIII is given by K2=12I2ω2K_2 = \frac{1}{2} I_2 \omega_2 \therefore Initial kinetic energy of two discs is Ki=12I1ω12+12I2ω22K_i = \frac{1}{2} I_1\omega_1^2 + \frac{1}{2} I_2 \omega_2^2 Final kinetic energy of the system is Kf=12(I1+I2)ω2K_f =\frac{1}{2} (I_1 +I_2)\omega^2 =12(I1+I2)(I1ω1+I2ω2I1+I2)=\frac{1}{2}(I_1+I_2) (\frac{I_1\omega_1 + I_2\omega_2}{I_1+I_2}) (Using (i)(i)) =12(I1ω1+I2ω2)2(I1+I2)=\frac{1}{2} \frac{(I_1\omega_1 +I_2 \omega_2)^2}{(I_1 +I_2)} Loss in kinetic energy of the system ΔK=KiKf=12(I1ω12+I2ω22)(I1ω1+I2ω2)22(I1+I2)\Delta K = K_{i} -K_{f} = \frac{1}{2}\left(I_{1}\omega_{1}^{2} +I_{2}\omega_{2}^{2}\right) - \frac{\left(I_{1}\omega_{1} +I_{2}\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)} =12I1ω12+12I2ω2212I12ω12(I1+I2)12I22ω22(I1+I2)122I1I2ω1ω2(I1+I2) = \frac{1}{2}I_{1}\omega_{1}^{2} +\frac{1}{2}I_{2}\omega_{2}^{2} - \frac{1}{2}\frac{ I_{1}^{2}\omega_{1}^{2}}{\left(I_{1}+I_{2}\right)} - \frac{1}{2}\frac{I_{2}^{2}\omega_{2}^{2}}{\left(I_{1}+I_{2}\right)} -\frac{1}{2}\frac{2I_{1}I_{2}\omega_{1}\omega_{2}}{\left(I_{1}+I_{2}\right)} =1(I1+I2)[12I12ω12+12I1I2ω12= \frac{1}{\left(I_{1}+I_{2}\right)}[\frac{1}{2}I_{1}^{2}\omega_{1}^{2} +\frac{1}{2}I_{1}I_{2}\omega_{1}^{2} +12I1I2ω22+12I22ω2212I12ω12+ \frac{1}{2}I_{1}I_{2}\omega_{2}^{2}+\frac{1}{2}I_{2}^{2}\omega_{2}^{2}-\frac{1}{2}I_{1}^{2}\omega_{1}^{2} 12I22ω22I1I2ω1ω2]-\frac{1}{2}I_{2}^{2}\omega_{2}^{2} - I_{1}I_{2}\omega _{1}\omega_{2}] =I1I22(I1+I2)(ω12+ω22ω1ω2)= \frac{I_{1}I_{2}}{2\left(I_{1}+I_{2}\right)}\left(\omega_{1}^{2}+\omega_{2}^{2} -\omega_{1}\omega_{2}\right) =I1I2(ω1ω2)22(I1+I2) = \frac{I_{1}I_{2}\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}