Solveeit Logo

Question

Physics Question on Inductance

Two different coils have self-inductance L1=9mHL_{1} = 9 \,mH and L2=3mHL_{2} = 3\, mH . At a certain instant, the current in the two coils is increasing at the same rate and the power supplied to the coils is also the same. The ratio of the energy stored in the two coils (U1/U2)(U_{1} / U_{2}) at that instant is

A

1/31/3

B

11

C

33

D

2727

Answer

1/31/3

Explanation

Solution

Given that L1=9mHL_{1}=9\,mH
L2=3mHL_{2}=3\,mH
dI1dt=dI2dt(i)\frac{dI_{1}}{dt}=\frac{dI_{2}}{dt} \ldots\left(i\right)
Power P1=P2P_{1}=P_{2}
e1I1=e2I2e_{1}I_{1}=e_{2}I_{2}
e1e2=I2I1\frac{e_{1}}{e_{2}}=\frac{I_{2}}{I_{1}}
L1dI1dtL2dI2dt=I2I1\frac{L_{1}\frac{dI_{1}}{dt}}{L_{2}\frac{dI_{2}}{dt}}=\frac{I_{2}}{I_{1}}
Hence, L1L2=I2I1\frac{L_{1}}{L_{2}}=\frac{I_{2}}{I_{1}}
or L2L1=I1I2(ii)\frac{L_{2}}{L_{1}}=\frac{I_{1}}{I_{2}} \ldots\left(ii\right)
U1U2=12L1I1212L2I22\therefore \frac{U_{1}}{U_{2}}=\frac{\frac{1}{2}L_{1} I_{1}^{2}}{\frac{1}{2}L_{2}I_{2}^{2}}
=L1L2(I1I2)2=\frac{L_{1}}{L_{2}}\left(\frac{I_{1}}{I_{2}}\right)^{2} [from E (ii)\left(ii\right)]
=L2L1=39=13=\frac{L_{2}}{L_{1}}=\frac{3}{9}=\frac{1}{3}