Solveeit Logo

Question

Question: Two different coils have self inductance \(8mH\) and \(2mH\). The current in both coils are increase...

Two different coils have self inductance 8mH8mH and 2mH2mH. The current in both coils are increased at the same constant rate. The ratio of the induced emf in the coil is:
A. 4:14:1
B. 1:41:4
C. 1:21:2
D. 2:12:1

Explanation

Solution

Hint -Relation between self inductance and electro-motive force (emf’s) is
L=e(ΔiΔt)L=-\frac{e}{\left( \frac{\Delta i}{\Delta t} \right)}
Where L=L= Self inductance, e=e= Electromotive force and ΔiΔt=\frac{\Delta i}{\Delta t}= Rate of change of current

Complete step-by-step solution :
Self induction:- The phenomenon of electromagnetic induction in which, on changing the current in a coil, an opposing induced emf is set up in that every coil is self induction.
L=e(ΔiΔt)L=-\frac{e}{\left( \frac{\Delta i}{\Delta t} \right)}
The S.I unit of self induction is henry (H).
Let us consider two coils, have self induction respectively L1{{L}_{1}} and L2{{L}_{2}}
L1=8mH=8×103H{{L}_{1}}=8mH=8\times {{10}^{-3}}H
L2=2mH=2×103H{{L}_{2}}=2mH=2\times {{10}^{-3}}H
Current is increased in both the coils at the same rate. It means that (ΔiΔt)\left( \frac{\Delta i}{\Delta t} \right) is the same for both.
For first coil
L1=8mH=8×103H{{L}_{1}}=8mH=8\times {{10}^{-3}}H
Use the formula
e1=L1(ΔiΔt){{e}_{1}}=-{{L}_{1}}\left( \frac{\Delta i}{\Delta t} \right)
e1=8×103(ΔiΔt){{e}_{1}}=-8\times {{10}^{-3}}\left( \frac{\Delta i}{\Delta t} \right) …………….(1)
For second coil
L2=2×103H{{L}_{2}}=2\times {{10}^{-3}}H
e2=L2(ΔiΔt){{e}_{2}}=-{{L}_{2}}\left( \frac{\Delta i}{\Delta t} \right)
e2=2×103(ΔiΔt){{e}_{2}}=-2\times {{10}^{-3}}\left( \frac{\Delta i}{\Delta t} \right) …………..(2)
The equation (1) divided by equation (2)
e1e2=8×103×(ΔiΔt)2×103×(ΔiΔt)\frac{{{e}_{1}}}{{{e}_{2}}}=\frac{-8\times {{10}^{-3}}\times \left( \frac{\Delta i}{\Delta t} \right)}{-2\times {{10}^{-3}}\times \left( \frac{\Delta i}{\Delta t} \right)}
e1e2=41\frac{{{e}_{1}}}{{{e}_{2}}}=\frac{4}{1}
e1:e2=4:1{{e}_{1}}:{{e}_{2}}=4:1

Note:
The value of (ΔiΔt)\left( \frac{\Delta i}{\Delta t} \right) does not take different for different coils because in this question the rate of current increases is constant.