Solveeit Logo

Question

Physics Question on Thermodynamics

Two different adiabatic paths for the same gas intersect two isothermal curves as shown in the PVP-V diagram. The relation between the ratio VaVd\frac{V_a}{V_d} and the ratio VbVc\frac{V_b}{V_c} is: angle

A

VaVd=(VbVc)1\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1}

B

VaVdVbVc\frac{V_a}{V_d} \neq \frac{V_b}{V_c}

C

VaVd=VbVc\frac{V_a}{V_d} = \frac{V_b}{V_c}

D

VaVd=(VbVc)2\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2

Answer

VaVd=VbVc\frac{V_a}{V_d} = \frac{V_b}{V_c}

Explanation

Solution

For an adiabatic process, the equation TVγ1=constantTV^{\gamma-1} = \text{constant} holds.

Between points aa and dd:
TaVaγ1=TdVdγ1.T_a \cdot V_a^{\gamma-1} = T_d \cdot V_d^{\gamma-1}.
VaVd=TdTa.\frac{V_a}{V_d} = \frac{T_d}{T_a}.

Between points bb and cc:
TbVbγ1=TcVcγ1.T_b \cdot V_b^{\gamma-1} = T_c \cdot V_c^{\gamma-1}.
VbVc=TcTb.\frac{V_b}{V_c} = \frac{T_c}{T_b}.

Given Td=TcT_d = T_c and Ta=TbT_a = T_b, we have:
VaVd=VbVc.\frac{V_a}{V_d} = \frac{V_b}{V_c}.

Final Answer: VaVd=VbVc\frac{V_a}{V_d} = \frac{V_b}{V_c}.