Solveeit Logo

Question

Question: Two different adiabatic parts for the same gas intersect two isothermals at T1 and T2 as shown in P-...

Two different adiabatic parts for the same gas intersect two isothermals at T1 and T2 as shown in P-V diagram. Then the ratio of VaVb\frac { V _ { a } } { V _ { b } } will be

A

VcVd\frac { V _ { c } } { V _ { d } }

B

C

γ\gamma

D

Answer

Explanation

Solution

: For adiabatic curve BC

T1Vbγ1=T2Vcγ1T _ { 1 } V _ { b } ^ { \gamma - 1 } = T _ { 2 } V _ { c } ^ { \gamma - 1 } ….. (i)

Again for adiabatic curve AD

T1Vaγ1=T2Vdγ1T _ { 1 } V _ { a } ^ { \gamma - 1 } = T _ { 2 } V _ { d } ^ { \gamma - 1 }….. (ii)

Dividing (i) by (ii)

(VbVa)γ1=(VcVd)γ1\left( \frac { V _ { b } } { V _ { a } } \right) ^ { \gamma - 1 } = \left( \frac { V _ { c } } { V _ { d } } \right) ^ { \gamma - 1 }

VaVb=VdVc\Rightarrow \frac { V _ { a } } { V _ { b } } = \frac { V _ { d } } { V _ { c } }