Solveeit Logo

Question

Mathematics Question on Event

Two dice are thrown. The events A, B, and C are as follows: A: getting an even number on the first die. B: getting an odd number on the first die.C: getting the sum of the numbers on the dice ≤ 5 Describe the events (i) A'(ii)not B(iii)A or B(iv) A and B(v)A but not C(vi)B or C(vii)B and C(viii)ABCA∩B'∩C'

Answer

When two dice are thrown, the sample space is given by
S=(x,y):x,y=1,2,3,4,5,6S=\\{(x,y):x,y=1,2,3,4,5,6\\}
=(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)=\\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}Accordingly,
A=(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4)(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)A=\\{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4)(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}
B=\\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\\}$$C=\\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\\}

(i)A=(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)=BA'=\\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\\}=B
(ii) Not B=B=(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4)(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)=AB=B'=\\{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4)(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}=A
(iii) A or B=AUB=(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)=SA \text{ or } B=AUB=\\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}=S
(iv) A and B=AB=ΦA \text{ and } B=A∩B=Φ
(v) AA but not C=AC=(2,4),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)C=A-C=\\{(2,4),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}
(vi) BB or C=BUC=(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)C=BUC=\\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\\}
(vii) B and C=BC=(1,1),(1,2),(1,3),(1,4),(3,1),(3,2)B \text{ and } C=B∩C=\\{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2)\\}
(viii) C=(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)C'=\\{(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}

ABC=AAC=AC=(2,4),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)∴A∩B'∩C'=A∩A∩C'=A∩C' =\\{(2,4),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\\}