Solveeit Logo

Question

Question: Two dice are thrown. Describe the sample space of this experiment....

Two dice are thrown. Describe the sample space of this experiment.

Explanation

Solution

  1. If two dice are thrown, there are 6 × 6 = 36 different outcomes possible.
  2. The sample space of a random experiment is the set of all possible outcomes.
  3. The sample space is represented using S.
  4. A subset of the sample space of an experiment is called an event represented by E.

Complete step by step solution:
When two dice are thrown, we may get an outcome as (1, 1), (2, 5), (1, 6), (3, 1) etc.
Since, there are six different possible outcomes for a dice, the set (S) of all the outcomes can be listed as follows:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) = 6 possibilities.\left( {1,{\text{ }}1} \right),{\text{ }}\left( {1,{\text{ }}2} \right),{\text{ }}\left( {1,{\text{ }}3} \right),{\text{ }}\left( {1,{\text{ }}4} \right),{\text{ }}\left( {1,{\text{ }}5} \right),{\text{ }}\left( {1,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) = 6 possibilities.\left( {2,{\text{ }}1} \right),{\text{ }}\left( {2,{\text{ }}2} \right),{\text{ }}\left( {2,{\text{ }}3} \right),{\text{ }}\left( {2,{\text{ }}4} \right),{\text{ }}\left( {2,{\text{ }}5} \right),{\text{ }}\left( {2,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) = 6 possibilities.\left( {3,{\text{ }}1} \right),{\text{ }}\left( {3,{\text{ }}2} \right),{\text{ }}\left( {3,{\text{ }}3} \right),{\text{ }}\left( {3,{\text{ }}4} \right),{\text{ }}\left( {3,{\text{ }}5} \right),{\text{ }}\left( {3,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.
  (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) = 6 possibilities.\;\left( {4,{\text{ }}1} \right),{\text{ }}\left( {4,{\text{ }}2} \right),{\text{ }}\left( {4,{\text{ }}3} \right),{\text{ }}\left( {4,{\text{ }}4} \right),{\text{ }}\left( {4,{\text{ }}5} \right),{\text{ }}\left( {4,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.
  (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) = 6 possibilities.\;\left( {5,{\text{ }}1} \right),{\text{ }}\left( {5,{\text{ }}2} \right),{\text{ }}\left( {5,{\text{ }}3} \right),{\text{ }}\left( {5,{\text{ }}4} \right),{\text{ }}\left( {5,{\text{ }}5} \right),{\text{ }}\left( {5,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.
  (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) = 6 possibilities.\;\left( {6,{\text{ }}1} \right),{\text{ }}\left( {6,{\text{ }}2} \right),{\text{ }}\left( {6,{\text{ }}3} \right),{\text{ }}\left( {6,{\text{ }}4} \right),{\text{ }}\left( {6,{\text{ }}5} \right),{\text{ }}\left( {6,{\text{ }}6} \right){\text{ }} = {\text{ }}6{\text{ }}possibilities.
Total number of elements (possibilities) of set S are therefore,n(S)=6×6=36n\left( S \right) = 6 \times 6 = 36; i.e. six possibilities of second dice for each of the six possibilities of the first dice.

Note:

  1. A sample space is usually denoted using set notation, and the possible ordered outcomes are listed as elements in the set.
  2. The probability of an outcome E in a sample space S is a number P between 1 and 0 that measures the likelihood that E will occur on a single trial.