Solveeit Logo

Question

Question: Two containers A and B are connected by a conducting solid cylindrical rod of length $\frac{242}{7}$...

Two containers A and B are connected by a conducting solid cylindrical rod of length 2427\frac{242}{7} cm and radius 8.3\sqrt{8.3} cm. Thermal conductivity of the rod is 693 watt/mole-K. The container A contains two mole of oxygen gas and the container B contains four mole of helium gas. At time t = 0 temperature difference of the containers is 50°C, after what time (in seconds) temperature difference between them will be 25°C. Transfer of heat takes place through the rod only. Neglect radiation loss. Take R = 8.3 J/mole-K and π=227\pi = \frac{22}{7}.

Answer

Approximately 3 seconds.

Explanation

Solution

Solution:

We use the fact that the heat‐flow through the rod is given by

dQdt=kAL(TATB)\frac{dQ}{dt}=\frac{kA}{L}\,(T_A-T_B)

and that the energy change in a container is

dQ=mCdT.dQ=m\,C\,dT.

Since the two containers are connected only by the rod, the loss from A equals the gain by B. It is most convenient to write the temperatures in “symmetric form”. Write

TA=Tf+ΔT2,TB=TfΔT2T_A=T_f+\frac{\Delta T}{2}\quad,\quad T_B=T_f-\frac{\Delta T}{2}

so that the difference ΔT=TATB\Delta T=T_A-T_B decays exponentially. One may show that

d(ΔT)dt=kAL(1mACA+1mBCB)ΔT.\frac{d(\Delta T)}{dt}=-\frac{kA}{L}\Bigl(\frac{1}{m_AC_A}+\frac{1}{m_BC_B}\Bigr)\Delta T.

Thus,

ΔT=ΔT0et/τ,τ=[kAL(1mACA+1mBCB)]1.\Delta T=\Delta T_0\,e^{-t/\tau}\quad,\quad \tau=\left[\frac{kA}{L}\Bigl(\frac{1}{m_AC_A}+\frac{1}{m_BC_B}\Bigr)\right]^{-1}.

Assumption on Heat Capacities:

For simple ideal gases at constant volume (a common assumption in such problems), we take:

  • For O₂ (diatomic) the molar heat capacity CV,O2=52RC_{V,O_2}=\frac{5}{2}R.
  • For He (monatomic) the molar heat capacity CV,He=32RC_{V,He}=\frac{3}{2}R.

So for the two containers:

mACA=2(52R)=5R,mBCB=4(32R)=6R.m_AC_A=2\Bigl(\frac{5}{2}R\Bigr)=5R\quad,\quad m_BC_B=4\Bigl(\frac{3}{2}R\Bigr)=6R.

Then,

1mACA+1mBCB=15R+16R=6+530R=1130R.\frac{1}{m_AC_A}+\frac{1}{m_BC_B}=\frac{1}{5R}+\frac{1}{6R}=\frac{6+5}{30R}=\frac{11}{30R}.

Thus,

τ=30R11LkA.\tau=\frac{30R}{11}\,\frac{L}{kA}\,.

Geometry of the Rod:

  • Length: L=2427 cm=2427×1100=242700L=\frac{242}{7}\text{ cm}=\frac{242}{7}\times\frac{1}{100}=\frac{242}{700} m.

  • Radius: r=8.3r=\sqrt{8.3} cm     \implies in meters =8.3100=\frac{\sqrt{8.3}}{100}.

  • Area:

A=πr2=π(8.3100)2=π8.310000=2278.310000.A=\pi r^2=\pi\Bigl(\frac{\sqrt{8.3}}{100}\Bigr)^2=\pi\,\frac{8.3}{10000} =\frac{22}{7}\,\frac{8.3}{10000}\,.

Substitution of Given Values:

We are given:

k=693wattmole-K,R=8.3Jmole-K.k=693\,\frac{\text{watt}}{\text{mole-K}},\quad R=8.3\,\frac{\text{J}}{\text{mole-K}}.

Thus,

τ=30×8.311LkA.\tau=\frac{30\times8.3}{11}\cdot\frac{L}{kA}.

Write L=242700L=\frac{242}{700} m and

A=228.3710000.A=\frac{22\cdot8.3}{7\cdot10000}\,.

Combine:

τ=308.311242700693228.3710000.\tau=\frac{30\cdot8.3}{11}\cdot\frac{\frac{242}{700}}{693\cdot\frac{22\cdot8.3}{7\cdot10000}}.

Notice that the factor 8.38.3 cancels. Rearranging we get:

τ=302421170071000069322.\tau=\frac{30\cdot242}{11\cdot700}\cdot\frac{7\cdot10000}{693\cdot22}.

Simplify step‐by‐step:

  • 30242=726030\cdot242=7260.
  • 700700 in the denominator cancels with the factor 77 as 7×100=7007\times100=700 so:
τ=72601170071000069322=7260117001000069322/7.\tau=\frac{7260}{11\cdot700}\cdot\frac{7\cdot10000}{693\cdot22} =\frac{7260}{11\cdot700}\cdot\frac{10000}{693\cdot22/7}.

It is simpler to note that after canceling common factors one obtains a numerical value approximately:

τ4.33seconds.\tau\approx 4.33\,\text{seconds.}

Since the temperature difference decays as:

ΔT=ΔT0et/τ,\Delta T=\Delta T_0\,e^{-t/\tau},

with ΔT0=50\Delta T_0=50^\circC, when ΔT=25\Delta T=25^\circC we have:

25=50et/τet/τ=12t=τln2.25=50\,e^{-t/\tau}\quad\Longrightarrow\quad e^{-t/\tau}=\frac{1}{2}\quad\Longrightarrow\quad t=\tau\,\ln2.

Taking ln20.693\ln2\approx0.693:

t4.33×0.6933seconds.t\approx 4.33\times0.693\approx 3\,\text{seconds}.

Minimal Explanation:

  1. Set up energy balance for two containers with mACA=5Rm_AC_A=5R and mBCB=6Rm_BC_B=6R.
  2. Get differential equation for ΔT\Delta T: dΔTdt=kAL(15R+16R)ΔT.\frac{d\Delta T}{dt}=-\frac{kA}{L}\Bigl(\frac{1}{5R}+\frac{1}{6R}\Bigr)\Delta T.
  3. Identify time constant: τ=30R11LkA.\tau=\frac{30R}{11}\,\frac{L}{kA}.
  4. Substitute R=8.3R=8.3, L=242700L=\frac{242}{700} m, A=228.3710000A=\frac{22\cdot8.3}{7\cdot10000}, k=693k=693 to get τ4.33\tau\approx4.33 s.
  5. Since 25=50et/τ25=50\,e^{-t/\tau} then t=τln23t=\tau\ln2\approx3 s.