Solveeit Logo

Question

Question: Two consecutive numbers from \[1,2,3,........................,n\] are removed. The arithmetic mean o...

Two consecutive numbers from 1,2,3,........................,n1,2,3,........................,n are removed. The arithmetic mean of the remaining number is 1054\dfrac{{105}}{4}, then the value of ‘nn’ is,
A. 48
B. 49
C. 50
D. 51

Explanation

Solution

Hint: First of all, find the sum of the remaining terms and then their arithmetic mean. As ‘pp’ and ‘nn’ are integers, so ‘nn’ must be even. Then find the value of nn by substituting it with another variable which is always even (like 2r2r). So, use this concept to reach the solution of the problem.

Complete step-by-step answer:

Given the arithmetic mean of the remaining terms when two consecutive terms are removed is 1054\dfrac{{105}}{4}

Let p,p+1p,p + 1 be the removed numbers from 1,2,3,........................,n1,2,3,........................,n then the remaining terms are n2n - 2.

Sum of the 1,2,3,........................,n1,2,3,........................,n terms =n(n+1)2 = \dfrac{{n\left( {n + 1} \right)}}{2}

Now sum of the remaining terms = \dfrac{{n\left( {n + 1} \right)}}{2} - \left\\{ {p + \left( {p + 1} \right)} \right\\}

The arithmetic mean of remaining terms is n(n+1)2(2p+1)n2\dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} which equals to 1054\dfrac{{105}}{4}.

n(n+1)2(2p+1)n2=1054 n(n+1)2(2p+1)2=105(n2)4 n2+n4p2=105n2102 2(n2+n4p2)=105n210 2n2+2n8p4105n+210=0 2n2103n8p+206=0  \Rightarrow \dfrac{{\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {2p + 1} \right)}}{{n - 2}} = \dfrac{{105}}{4} \\\ \Rightarrow \dfrac{{n\left( {n + 1} \right) - 2\left( {2p + 1} \right)}}{2} = \dfrac{{105\left( {n - 2} \right)}}{4} \\\ \Rightarrow {n^2} + n - 4p - 2 = \dfrac{{105n - 210}}{2} \\\ \Rightarrow 2\left( {{n^2} + n - 4p - 2} \right) = 105n - 210 \\\ \Rightarrow 2{n^2} + 2n - 8p - 4 - 105n + 210 = 0 \\\ \Rightarrow 2{n^2} - 103n - 8p + 206 = 0 \\\

Since ‘pp’ and ‘nn’ are integers, so ‘nn’ must be even.

8p=2n2103n+206 p=18(2n2103n+206)  \Rightarrow 8p = 2{n^2} - 103n + 206 \\\ \therefore p = \dfrac{1}{8}\left( {2{n^2} - 103n + 206} \right) \\\

Let n=2rn = 2r then

p=2(2r)2103(2r)2068 p=28[4r2103r103] p=4r2+103(1r)4  \Rightarrow p = \dfrac{{2{{\left( {2r} \right)}^2} - 103\left( {2r} \right) - 206}}{8} \\\ \Rightarrow p = \dfrac{2}{8}\left[ {4{r^2} - 103r - 103} \right] \\\ \Rightarrow p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} \\\

Since ‘pp’ is an integer so (1r)\left( {1 - r} \right) must be divisible by 4.
Let r=4t+1r = 4t + 1 then n=2(4t+1)=8t+2n = 2\left( {4t + 1} \right) = 8t + 2 and here ‘tt’ is positive

\Rightarrow p = \dfrac{{4{{\left( {4t + 1} \right)}^2} + 103\left\\{ {1 - \left( {4t + 1} \right)} \right\\}}}{4} \\\ \Rightarrow p = \dfrac{{4\left( {16{t^2} + 8t + 1} \right) - 4\left( {103t} \right)}}{4} \\\ \Rightarrow p = \dfrac{4}{4}\left( {16{t^2} + 8t - 103t + 1} \right) \\\ \Rightarrow p = 16{t^2} - 95t + 1 \\\ \therefore p = 16{t^2} - 95t + 1 \\\

Here 1p<n1 \leqslant p < n as p,p+1p,p + 1 are consecutive terms in 1,2,3,........................,n1,2,3,........................,n

116t295t+1<n 116t295t+1<8t+2 [n=8t+2]  \Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < n \\\ \Rightarrow 1 \leqslant 16{t^2} - 95t + 1 < 8t + 2{\text{ }}\left[ {\because n = 8t + 2} \right] \\\

Splitting the terms, we have

116t295t+1  016t295t  16t295t t9516 t5.9375  \Rightarrow 1 \leqslant 16{t^2} - 95t + 1{\text{ }} \\\ \Rightarrow 0 \leqslant 16{t^2} - 95t{\text{ }} \\\ \Rightarrow 16{t^2} \geqslant 95t \\\ \Rightarrow t \geqslant \dfrac{{95}}{{16}} \\\ \therefore t \geqslant 5.9375 \\\

And the other term is

16t295t+1<8t+2 16t2103t1<0  \Rightarrow 16{t^2} - 95t + 1 < 8t + 2 \\\ \Rightarrow 16{t^2} - 103t - 1 < 0 \\\

By using the formula b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} we have

t=103±(103)24(16)(1)2(16) t=103±10609+6432 t=103±103.3132 t=103+103.3132,103103.3132 t=206.3132,0.3132 t=6.45,0.0097  \Rightarrow t = \dfrac{{103 \pm \sqrt {{{\left( { - 103} \right)}^2} - 4\left( {16} \right)\left( { - 1} \right)} }}{{2\left( {16} \right)}} \\\ \Rightarrow t = \dfrac{{103 \pm \sqrt {10609 + 64} }}{{32}} \\\ \Rightarrow t = \dfrac{{103 \pm 103.31}}{{32}} \\\ \Rightarrow t = \dfrac{{103 + 103.31}}{{32}},\dfrac{{103 - 103.31}}{{32}} \\\ \Rightarrow t = \dfrac{{206.31}}{{32}},\dfrac{{ - 0.31}}{{32}} \\\ \Rightarrow t = 6.45, - 0.0097 \\\

Since ‘tt’ is positive we have t<6.45t < 6.45

So, from t5.9375 and t<6.45t \geqslant 5.9375{\text{ and }}t < 6.45 we get t=6t = 6

As we have n=8t+2=8×6+2=48+2=50n = 8t + 2 = 8 \times 6 + 2 = 48 + 2 = 50

Therefore, the value of ‘nn’ is 5050

Thus, the correct option is C.

Note: As ‘tt’ is an integer we have considered the value which is satisfying the inequalities of tt. In the equation p=4r2+103(1r)4p = \dfrac{{4{r^2} + 103\left( {1 - r} \right)}}{4} , 4r24{r^2} is divisible by 4. As pp is an integer (1r)\left( {1 - r} \right) must be divisible by 4.