Solveeit Logo

Question

Physics Question on Current electricity

Two conductors have the same resistances at 0C0^\circ \text{C} but their temperature coefficients of resistance are α1\alpha_1 and α2\alpha_2. The respective temperature coefficients for their series and parallel combinations are:

A

α1+α2,α1+α22\alpha_1 + \alpha_2, \quad \frac{\alpha_1 + \alpha_2}{2}

B

α1+α22,α1+α22\frac{\alpha_1 + \alpha_2}{2}, \quad \frac{\alpha_1 + \alpha_2}{2}

C

α1+α2,α1α2α1+α2\alpha_1 + \alpha_2, \quad \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}

D

α1+α22,α1+α2\frac{\alpha_1 + \alpha_2}{2}, \quad \alpha_1 + \alpha_2

Answer

α1+α22,α1+α22\frac{\alpha_1 + \alpha_2}{2}, \quad \frac{\alpha_1 + \alpha_2}{2}

Explanation

Solution

Series:

Req=R1+R2R_{\text{eq}} = R_1 + R_2

2R(1+αeqΔθ)=R(1+α1Δθ)+R(1+α2Δθ)2R(1 + \alpha_{\text{eq}} \Delta \theta) = R(1 + \alpha_1 \Delta \theta) + R(1 + \alpha_2 \Delta \theta)

2R(1+αeqΔθ)=2R+(α1+α2)RΔθ2R(1 + \alpha_{\text{eq}} \Delta \theta) = 2R + (\alpha_1 + \alpha_2)R \Delta \theta

αeq=α1+α22\alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2}

Parallel:

1Req=1R1+1R2\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2}

π211+αeqΔθ=1R(1+α1Δθ)+1R(1+α2Δθ)\frac{\pi}{2} \frac{1}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{R(1 + \alpha_1 \Delta \theta)} + \frac{1}{R(1 + \alpha_2 \Delta \theta)}

21+αeqΔθ=11+α1Δθ+11+α2Δθ\frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1}{1 + \alpha_1 \Delta \theta} + \frac{1}{1 + \alpha_2 \Delta \theta}

21+αeqΔθ=1+α2Δθ+1+α1Δθ(1+α1Δθ)(1+α2Δθ)\frac{2}{1 + \alpha_{\text{eq}} \Delta \theta} = \frac{1 + \alpha_2 \Delta \theta + 1 + \alpha_1 \Delta \theta}{(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)}

2[(1+α1Δθ)(1+α2Δθ)]=[2+(α1+α2)Δθ][1+αeqΔθ]2[(1 + \alpha_1 \Delta \theta)(1 + \alpha_2 \Delta \theta)] = [2 + (\alpha_1 + \alpha_2) \Delta \theta][1 + \alpha_{\text{eq}} \Delta \theta]

2[1+α1Δθ+α2Δθ+α1α2Δθ2]=2+2(α1+α2)Δθ+(α1+α2)Δθ2 \left[1 + \alpha_1 \Delta \theta + \alpha_2 \Delta \theta + \alpha_1 \alpha_2 \Delta \theta^2 \right] = 2 + 2(\alpha_1 + \alpha_2) \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta

Neglecting small terms:

2+2(α1+α2)Δθ=2+2αeqΔθ+(α1+α2)Δθ2 + 2(\alpha_1 + \alpha_2) \Delta \theta = 2 + 2 \alpha_{\text{eq}} \Delta \theta + (\alpha_1 + \alpha_2) \Delta \theta

(α1+α2)Δθ=2αeqΔθ(\alpha_1 + \alpha_2) \Delta \theta = 2 \alpha_{\text{eq}} \Delta \theta

αeq=α1+α22\alpha_{\text{eq}} = \frac{\alpha_1 + \alpha_2}{2}