Solveeit Logo

Question

Physics Question on Electrostatic potential

Two concentric spheres of radii RR and rr have positive charges q1q_1 and q2q_2 with equal surface charge densities. What is the electric potential at their common centre ?

A

σϵo(R+r)\frac {\sigma}{\epsilon_o}(R+r)

B

σϵo(Rr)\frac {\sigma}{\epsilon_o}(R-r)

C

σϵo(1R+1r)\frac {\sigma}{\epsilon_o} (\frac{1}{R}+\frac{1}{r})

D

σϵo(1r)\frac {\sigma}{\epsilon_o} (\frac {1}{r})

Answer

σϵo(R+r)\frac {\sigma}{\epsilon_o}(R+r)

Explanation

Solution

Potential at the centre due to sphere with radius RR, V1=q14πε0RV_{1}=\frac{q_{1}}{4 \pi \varepsilon_{0} R} Potential at the centre due to sphere with radius rr V2=q24πε0rV_{2}=\frac{q_{2}}{4 \pi \varepsilon_{0} \,r} Given, surface charge densities for both spheres σ=σR=σr\sigma=\sigma_{R}=\sigma_{r} i.e., q14πε0R2=q24πε0r2\frac{q_{1}}{4 \pi \varepsilon_{0} R^{2}}=\frac{q_{2}}{4 \pi \varepsilon_{0} r^{2}} a1=R2r2q2\Rightarrow a_{1}=\frac{R^{2}}{r^{2}} q_{2} Total potential at the centre due to both spheres V=V1+V2V =V_{1}+V_{2} =q14πε0R+q24πε0r=14πε0(q1R+q2r)=\frac{q_{1}}{4 \pi \varepsilon_{0} R}+\frac{q_{2}}{4 \pi \varepsilon_{0} r}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{R}+\frac{q_{2}}{r}\right) =14πε0(R2r2q2R)+q2r=q24πε0(R+rr2)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{R^{2}}{r^{2}} \frac{q_{2}}{R}\right)+\frac{q_{2}}{r}=\frac{q_{2}}{4 \pi \varepsilon_{0}}\left(\frac{R+r}{r^{2}}\right) =q24πr2ε0(R+r)=σε0(R+r)=\frac{q_{2}}{4 \pi r^{2} \varepsilon_{0}}(R+r)=\frac{\sigma}{\varepsilon_{0}}(R+r)