Solveeit Logo

Question

Physics Question on Gauss Law

Two concentric hollow spherical shells have radii rr and R(R>>r)R \left(R\,>>\,r\right) . A charge QQ is distributed on them such that the surface charge densities are equal. The electric potential at the centre is

A

Q(R+r)4πε0(R2+r2)\frac{Q(R+r)}{4 \pi \varepsilon_{0}\left(R^{2}+r^{2}\right)}

B

Q(R2+r2)4πε0(R+r)\frac{Q\left(R^{2}+r^{2}\right)}{4 \pi \varepsilon_{0}(R+r)}

C

Q(R+r)\frac{Q}{\left(R+r\right)}

D

zero

Answer

Q(R+r)4πε0(R2+r2)\frac{Q(R+r)}{4 \pi \varepsilon_{0}\left(R^{2}+r^{2}\right)}

Explanation

Solution

We know that, the surface charge densities is σ=Q4π(r2+R2)...(i)\sigma=\frac{Q}{4 \pi\left(r^{2}+R^{2}\right)}\,\,\,...(i) The electric potential at the centre V=14πε0[σ×4πr2r+σ×4πR2R]V =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{\sigma \times 4 \pi r^{2}}{r}+\frac{\sigma \times 4 \pi R^{2}}{R}\right] =14πε0×σ×4π[r2r+R2R]=\frac{1}{4 \pi \varepsilon_{0}} \times \sigma \times 4 \pi\left[\frac{r^{2}}{r}+\frac{R^{2}}{R}\right] =σε0(r+R)=\frac{\sigma}{\varepsilon_{0}}(r+R) and V=Qε04π(r2+R2)(r+R)V=\frac{Q}{\varepsilon_{0} \cdot 4 \pi\left(r^{2}+R^{2}\right)} \cdot(r+R) V=Q4πε0(r+R)(r2+R2)\Rightarrow V =\frac{Q}{4 \pi \varepsilon_{0}} \cdot \frac{(r+R)}{\left(r^{2}+R^{2}\right)}