Solveeit Logo

Question

Physics Question on Magnetic Field Due To A Current Element, Biot-Savart Law

Two concentric coils each of radius equal to 2π2\, \pi cm are placed right angles to each other.If 3A3\,A and 4A4\,A are the currents flowing through the two coils respectively. The magnetic induction (inWbm2)(in\, Wb\, m^{-2}) at the centre of the coils will be

A

12×10512\times 10^{-5}

B

10×10510\times 10^{-5}

C

5×1055\times 10^{-5}

D

7×1057 \times 10^{-5}

Answer

5×1055\times 10^{-5}

Explanation

Solution

Given, I1=3AI_{1} =3\, A I2=4AI_{2} =4 A R=2πcm=2π×102mR =2 \pi cm =2 \pi \times 10^{-2}\, m We know that, magnetic field of a coil, B=μ0I2RB=\frac{\mu_{0} I}{2 R} Now, B1=μ0I12R=μ02×32π×102B_{1} =\frac{\mu_{0} I_{1}}{2 R}=\frac{\mu_{0}}{2} \times \frac{3}{2 \pi \times 10^{-2}} =μ04π×3102=\frac{\mu_{0}}{4 \pi} \times \frac{3}{10^{-2}} =107×3102=3×105T=10^{-7} \times \frac{3}{10^{-2}}=3 \times 10^{-5}\, T Similarly, B2=μ0I22R=μ02×42π×102B_{2} =\frac{\mu_{0} I_{2}}{2 R}=\frac{\mu_{0}}{2} \times \frac{4}{2 \pi \times 10^{-2}} =μ04π×4102=\frac{\mu_{0}}{4 \pi} \times \frac{4}{10^{-2}} =107×4102=4×105T=10^{-7} \times \frac{4}{10^{2}}=4 \times 10^{-5} \,T Now, net magnetic field at centre of a coil, B=B12+B22B=\sqrt{B_{1}^{2}+B_{2}^{2}} B=(3×105)2+(4×105)2B=\sqrt{\left(3 \times 10^{-5}\right)^{2}+\left(4 \times 10^{-5}\right)^{2}} B=1010(9+16)B=\sqrt{10^{-10}(9+16)} B=5×105TB=5 \times 10^{-5}\, T