Solveeit Logo

Question

Question: Two coils have self-inductance *L1 =* 4 mH and *L2=* 1 mH respectively. The currents in the two coil...

Two coils have self-inductance L1 = 4 mH and L2= 1 mH respectively. The currents in the two coils are increased at the same rate. At a certain instant of time both coils are given the same power. If I1 and l2 are the currents in the two coils at that instant of time respectively, then the value of I1I2\frac { \mathrm { I } _ { 1 } } { \mathrm { I } _ { 2 } } is

A

18\frac { 1 } { 8 }

B

14\frac { 1 } { 4 }

C

12\frac { 1 } { 2 }

D

1

Answer

14\frac { 1 } { 4 }

Explanation

Solution

ε=LdIdt| \varepsilon | = \mathrm { L } \frac { \mathrm { dI } } { \mathrm { dt } }

L=εdI/dt=IRdI/dt=IP/I2dI/dt=P1(dI/dt)\mathrm { L } = \frac { | \varepsilon | } { \mathrm { dI } / \mathrm { dt } } = \frac { \mathrm { IR } } { \mathrm { dI } / \mathrm { dt } } = \frac { \mathrm { IP } / \mathrm { I } ^ { 2 } } { \mathrm { dI } / \mathrm { dt } } = \frac { \mathrm { P } } { 1 ( \mathrm { dI } / \mathrm { dt } ) }

As P and (dI/dt) are same for both the coils