Solveeit Logo

Question

Physics Question on Wave optics

Two coherent sources of light interfere. The intensity ratio of two sources is 1 : 4. For this interference pattern if the value of
Imax+IminImaxImin\frac{I_{max}+I_{min}}{I_{max}-I_{min}}is equal to 2α+1β+3,\frac{2α+1}{β+3},
then α/β will be

A

1.5

B

2

C

0.5

D

1

Answer

2

Explanation

Solution

The correct answer is (B) : 2
Imax=(I1+I2)2I_{max} = (\sqrt{I_1}+\sqrt{I_2})^2
Imin=(I1I2)2I_{min} = (\sqrt{I_1}-\sqrt{I_2})^2
Imax+IminImaxImin=2(I1+I2)4×I1I2∴ \frac{I_{max}+I_{min}}{I_{max}-I_{min}} = \frac{2(I_1+I_2)}{4×\sqrt{I_1I_2}}
=12×(I1I2+1)I1I2=\frac{1}{2} ×\frac{(\frac{I_1}{I_2}+1)}{\sqrt{\frac{I_1}{I_2}}}
=12×(14+1)(12)= \frac{1}{2} ×\frac{(\frac{1}{4}+1)}{(\frac{1}{2})}
=54=2×2+11+3= \frac{5}{4} = \frac{2×2+1}{1+3}
αβ=21=2∴ \frac{α}{β} = \frac{2}{1} = 2