Solveeit Logo

Question

Question: Two coherent sources of intensity ratio b interfere. Find the ratio ![](https://cdn.pureessence.tech...

Two coherent sources of intensity ratio b interfere. Find the ratio in the interference pattern –

A

2β1+β\frac{2\sqrt{\beta}}{1 + \beta}

B

2β1+β\frac{2\beta}{1 + \beta}

C

β+1β1\frac{\sqrt{\beta} + 1}{\sqrt{\beta} - 1}

D

β1+β\frac{\sqrt{\beta}}{1 + \sqrt{\beta}}

Answer

2β1+β\frac{2\sqrt{\beta}}{1 + \beta}

Explanation

Solution

It is given a1a2\frac{a_{1}}{a_{2}}=I1I2\sqrt{\frac{I_{1}}{I_{2}}}=β\sqrt{\beta}

Imax = (a1 + a2)2

Imin = (a1 – a2)2

=(a1+a2)2(a1a2)2(a1+a2)2+(a1a2)2\frac{(a_{1} + a_{2})^{2} - (a_{1} - a_{2})^{2}}{(a_{1} + a_{2})^{2} + (a_{1} - a_{2})^{2}}=2a1a2a12+a22\frac{2a_{1}a_{2}}{a_{1}^{2} + a_{2}^{2}}=2(a1a1)(a1a1)2+1\frac{2\left( \frac{a_{1}}{a_{1}} \right)}{\left( \frac{a_{1}}{a_{1}} \right)^{2} + 1}

=2ββ+1\frac{2\sqrt{\beta}}{\beta + 1}