Solveeit Logo

Question

Physics Question on Optics

Two coherent monochromatic light beams of intensities I and 4I are superimposed. The difference between maximum and minimum possible intensities in the resulting beam is x I. The value of x is______.

Answer

The maximum intensity ImaxI_{\text{max}} in the superimposed beam is given by:
Imax=(I+4I)2=(I+2I)2=(3I)2=9II_{\text{max}} = \left( \sqrt{I} + \sqrt{4I} \right)^2 = \left( \sqrt{I} + 2\sqrt{I} \right)^2 = (3\sqrt{I})^2 = 9I
The minimum intensity IminI_{\text{min}} is given by:
Imin=(4II)2=(2II)2=(I)2=II_{\text{min}} = \left( \sqrt{4I} - \sqrt{I} \right)^2 = \left( 2\sqrt{I} - \sqrt{I} \right)^2 = (\sqrt{I})^2 = I
Therefore, the difference ImaxIminI_{\text{max}} - I_{\text{min}} is:
x=ImaxImin=9II=8Ix = I_{\text{max}} - I_{\text{min}} = 9I - I = 8I