Solveeit Logo

Question

Physics Question on doppler effect

Two coherent monochromatic light beams of intensities ratio 1 : 4 are superposed. The ratio of maximum and minimum intensities in the resulting beam will be

A

9:01

B

5:03

C

25:09:00

D

9:25

Answer

9:01

Explanation

Solution

Given, I1:I2=1:4I_1 : I_2 = 1 : 4
As, we know
Imax=(I1+I2)2I_{max} =\left(\sqrt{I_{1}} +\sqrt{I_{2}}\right)^{2}
and Imin=(I1I2)2I_{min} =\left(\sqrt{I_{1}} -\sqrt{I_{2}}\right)^{2}
Hence, the ratio
ImaxImin=[I1+I2I1I2]=[I1I2+1I1I21]2\frac{I_{max}}{I_{min}} =\left[\frac{\sqrt{I_{1}} +\sqrt{I_{2}}}{\sqrt{I_{1}} -\sqrt{I_{2}}}\right] = \left[\frac{\sqrt{\frac{I_{1}}{I_{2}}}+1}{\sqrt{\frac{I_{1}}{I_{2}}}-1}\right]^{2}
ImaxImin=[14+1141]=[1+22122]2=[31]2=9:1\Rightarrow \frac{I_{max}}{I_{min}} = \left[\frac{\sqrt{\frac{1}{4}}+1}{\sqrt{\frac{1}{4}}-1}\right] =\left[\frac{\frac{1+2}{2}}{\frac{1-2}{2}}\right]^{2} = \left[\frac{3}{-1}\right]^{2} = 9 : 1
ImaxImin=91\Rightarrow \frac{I_{max}}{I_{min}} = \frac{9}{1}
Hence, the ratio of maximum and minimum intensities in the resulting beam is 9:19 : 1.