Solveeit Logo

Question

Question: Two coaxial long solenoids of equal lengths have current i<sub>1</sub>, i<sub>2</sub>, number of tur...

Two coaxial long solenoids of equal lengths have current i1, i2, number of turns per unit length n1, n2 and radius r1, r2 respectively. If n1i1 = n2i2 and the two solenoids carry current in opposite sense, the magnetic energy stored per unit length is [r2> r1]-

A

μ02n12i12π(r22r12)\frac { \mu _ { 0 } } { 2 } n _ { 1 } ^ { 2 } i _ { 1 } ^ { 2 } \pi \left( r _ { 2 } ^ { 2 } - r _ { 1 } ^ { 2 } \right)

B

C

μ02n12i12πr12\frac { \mu _ { 0 } } { 2 } \mathrm { n } _ { 1 } ^ { 2 } \mathrm { i } _ { 1 } ^ { 2 } \pi \mathrm { r } _ { 1 } ^ { 2 }

D

Answer

μ02n12i12π(r22r12)\frac { \mu _ { 0 } } { 2 } n _ { 1 } ^ { 2 } i _ { 1 } ^ { 2 } \pi \left( r _ { 2 } ^ { 2 } - r _ { 1 } ^ { 2 } \right)

Explanation

Solution

Magnetic field is non zero only in the region between the two solenoids, where B = µ0 n2i2

\ energy stored per unit volume

=

The energy per unit length = energy per unit volume × area of cross section

where B ¹ 0 = μ0n22i222\frac { \mu _ { 0 } \mathrm { n } _ { 2 } ^ { 2 } \mathrm { i } _ { 2 } ^ { 2 } } { 2 } [p (r22 – r12)]

= μ0n12i122\frac { \mu _ { 0 } \mathrm { n } _ { 1 } ^ { 2 } \mathrm { i } _ { 1 } ^ { 2 } } { 2 } [p (r22 – r12), since n1i1 = n2i2