Solveeit Logo

Question

Question: Two circular discs <img src="https://cdn.pureessence.tech/canvas_663.png?top_left_x=900&top_left_y=1...

Two circular discs and BB are of equal masses and thickness but made of metals with densities and dBd _ { B } (dA>dB)\left( d _ { A } > d _ { B } \right). If their moments of inertia about an axis passing through centres and normal to the circular faces be IAI _ { A } and IBI _ { B } , then

A

IA=IBI _ { A } = I _ { B }

B

IA>IBI _ { A } > I _ { B }

C

IA<IBI _ { A } < I _ { B }

D

IA>=<IBI _ { A } > = < I _ { B }

Answer

IA<IBI _ { A } < I _ { B }

Explanation

Solution

Moment of inertia of circular disc about an axis passing through centre and normal to the circular face

I=12MR2I = \frac { 1 } { 2 } M R ^ { 2 } =12M(Mπtρ)= \frac { 1 } { 2 } M \left( \frac { M } { \pi t \rho } \right)[As M=VρM = V \rho =πR2tρ= \pi R ^ { 2 } t \rho

R2=MπtρR ^ { 2 } = \frac { M } { \pi t \rho }]

I=M22πtρI = \frac { M ^ { 2 } } { 2 \pi t \rho } or I1ρI \propto \frac { 1 } { \rho } If mass and thickness are constant.

So, in the problem IAIB=dBdA\frac { I _ { A } } { I _ { B } } = \frac { d _ { B } } { d _ { A } } IA<IB\therefore I _ { A } < I _ { B }[As dA>dBd _ { A } > d _ { B }]