Solveeit Logo

Question

Physics Question on Magnetic Field Due To A Current Element, Biot-Savart Law

Two circular coils PP and QQ of 100100 turns each have the same radius of πcm\pi \, \text{cm}. The currents in PP and QQ are 1A1 \, \text{A} and 2A2 \, \text{A} respectively. PP and QQ are placed with their planes mutually perpendicular with their centers coinciding. The resultant magnetic field induction at the center of the coils is xmT\sqrt{x} \, \text{mT}, where x=x = ______.
[Use μ0=4π×107TmA1\mu_0 = 4 \pi \times 10^{-7} \, \text{TmA}^{-1}]

Answer

Number of turns: N=100N = 100
Radius of coils: r=πcm=π×102mr = \pi \, \text{cm} = \pi \times 10^{-2} \, \text{m}
Current in coil PP: I1=1AI_1 = 1 \, \text{A}
Current in coil QQ: I2=2AI_2 = 2 \, \text{A}

The magnetic field at the center of a circular coil is given by:

B=μ0NI2rB = \frac{\mu_0 NI}{2r} where μ0=4π×107TmA1\mu_0 = 4\pi \times 10^{-7} \, \text{TmA}^{-1}.

Calculating the magnetic fields:

BP=μ0NI12r=4π×107×100×12×π×102=2×103TB_P = \frac{\mu_0 NI_1}{2r} = \frac{4\pi \times 10^{-7} \times 100 \times 1}{2 \times \pi \times 10^{-2}} = 2 \times 10^{-3} \, \text{T} BQ=μ0NI22r=4π×107×100×22×π×102=4×103TB_Q = \frac{\mu_0 NI_2}{2r} = \frac{4\pi \times 10^{-7} \times 100 \times 2}{2 \times \pi \times 10^{-2}} = 4 \times 10^{-3} \, \text{T}

Since the magnetic fields are perpendicular, the resultant magnetic field BnetB_{\text{net}} is given by:

Bnet=BP2+BQ2B_{\text{net}} = \sqrt{B_P^2 + B_Q^2} Bnet=(2×103)2+(4×103)2TB_{\text{net}} = \sqrt{(2 \times 10^{-3})^2 + (4 \times 10^{-3})^2} \, \text{T} Bnet=4×106+16×106TB_{\text{net}} = \sqrt{4 \times 10^{-6} + 16 \times 10^{-6}} \, \text{T} Bnet=20×106TB_{\text{net}} = \sqrt{20 \times 10^{-6}} \, \text{T} Bnet=20×103T=20mTB_{\text{net}} = \sqrt{20} \times 10^{-3} \, \text{T} = \sqrt{20} \, \text{mT}
Thus, x=20x = 20.