Solveeit Logo

Question

Physics Question on Electrostatics

Two charges of 4μC-4 \, \mu C and +4μC+4 \, \mu C are placed at the points A(1,0,4)mA(1, 0, 4) \, m and B(2,1,5)mB(2, -1, 5) \, m located in an electric field E=0.20i^V/cm\vec{E} = 0.20 \, \hat{i} \, V / cm. The magnitude of the torque acting on the dipole is 8α×105Nm8\sqrt{\alpha} \times 10^{-5} \, Nm, where α=\alpha = \,.

Answer

The electric dipole moment is given by:

p=q×d\vec{p} = q \times \vec{d}

Given:
- q=4×106Cq = 4 \times 10^{-6} \, \text{C},
- Position vectors A=(1,0,0.4)\vec{A} = (1, 0, 0.4) and B=(2,1,5)\vec{B} = (2, -1, 5).

The dipole vector d\vec{d} is:

d=BA=(21,10,50.4)=(1,1,4.6)m.\vec{d} = \vec{B} - \vec{A} = (2 - 1, -1 - 0, 5 - 0.4) = (1, -1, 4.6) \, \text{m}.

Thus:

p=qd=4×106(1,1,4.6)Cm.\vec{p} = q \cdot \vec{d} = 4 \times 10^{-6} \cdot (1, -1, 4.6) \, \text{Cm}.

The torque on the dipole is given by:

τ=p×E.\vec{\tau} = \vec{p} \times \vec{E}.

Given:
- E=0.2V/cm=20V/m\vec{E} = 0.2 \, \text{V/cm} = 20 \, \text{V/m} in the direction i^\hat{i},
- τ=(4×106)(1,1,4.6)×(20,0,0).\vec{\tau} = (4 \times 10^{-6}) \cdot (1, -1, 4.6) \times (20, 0, 0).

Calculating the cross product:

τ=(0,204.6,201)106=(0,92,20)106Nm.\vec{\tau} = (0, 20 \cdot 4.6, -20 \cdot -1) \cdot 10^{-6} = (0, 92, 20) \cdot 10^{-6} \, \text{Nm}.

The magnitude is:

τ=02+922+202106=8464+400106=886410694.2106Nm.|\tau| = \sqrt{0^2 + 92^2 + 20^2} \cdot 10^{-6} = \sqrt{8464 + 400} \cdot 10^{-6} = \sqrt{8864} \cdot 10^{-6} \approx 94.2 \cdot 10^{-6} \, \text{Nm}.

Given τ=8×105Nm\tau = 8 \times 10^{-5} \, \text{Nm}, solve for α\alpha as needed.

The Correct answer is: 2