Solveeit Logo

Question

Physics Question on kinetic theory

Two chamber containing m1m_1 and m2m_2 grams of a gas at pressures P1P_1 and P2P_2 respectively are put in communication with each other, temperature remaining constant. The common pressure reached will be

A

P1P2(m1+m2)P2m1+P1m2\frac{P_{1}P_{2}\left(m_{1} + m_{2}\right)}{P_{2}m_{1} + P_{1}m_{2}}

B

P1P2m1P2m1+P1m2\frac{P_{1}P_{2}m_{1} }{P_{2}m_{1} + P_{1}m_{2}}

C

m1m2(P1+P2)P2m1+P1m2\frac{m_{1}m_{2}\left(P_{1} + P_{2}\right) }{P_{2}m_{1} + P_{1}m_{2}}

D

m1m2P2P2m1+P1m2\frac{m_{1}m_{2} P_{2} }{P_{2}m_{1} + P_{1}m_{2}}

Answer

P1P2(m1+m2)P2m1+P1m2\frac{P_{1}P_{2}\left(m_{1} + m_{2}\right)}{P_{2}m_{1} + P_{1}m_{2}}

Explanation

Solution

According to Boyles law, PV=kTPV = kT (a constant) or Pmρ=kT\quad P \frac{m}{\rho} = kT \quad orρ=PmkT\quad\rho = \frac{Pm}{kT} orρ=PK\quad \rho = \frac{P}{K}\quad (where kTm=K\frac{kT}{m} = K a constant) So, ρ1=P1K\rho_{1}= \frac{P_{1}}{K} and V1=m1ρ1=m1P1/K=Km1P1V_{1} = \frac{m_{1}}{\rho_{1}} = \frac{m_{1}}{P_{1} /K} = \frac{Km_{1}}{P_{1}} Similarly, V2=Km2P2V_{2} = \frac{Km_{2}}{P_{2}} Total volume =V1+V2=K(m1P1+m2P2)=V_{1} + V_{2} = K \left(\frac{m_{1}}{P_{1}} + \frac{m_{2}}{P_{2}}\right) Let PP be the common pressure and ρ\rho be the common density of mixture. Then. ρ=m1+m2V1+V2=m1+m2K(m1P1+m2P2)\rho = \frac{m_{1} + m_{2}}{V_{1} + V_{2}} = \frac{m_{1} + m_{2}}{K\left(\frac{m_{1}}{P_{1}} + \frac{m_{2}}{P_{2}}\right)} P=Kρ=m1+m2m1P1+m2P2=P1P2(m1+m2)(m1P2+m2P1)\therefore\quad P = K\rho = \frac{m_{1} + m_{2}}{\frac{m_{1}}{P_{1}} + \frac{m_{2}}{P_{2}}} = \frac{P_{1}P_{2}\left(m_{1}+ m_{2}\right)}{\left(m_{1}P_{2} + m_{2}P_{1}\right)}