Solveeit Logo

Question

Physics Question on momentum

Two carts of masses 200kg200\, kg and 300kg300 \,kg on horizontal rails are pushed apart. Suppose the coefficient of friction between the carts and the rails are same. If the 200kg200\, kg cart travels a distance of 36m36\, m and stops, then the distance travelled by the cart weighing 300kg300\, kg is

A

32 m

B

24 m

C

16 m

D

12 m

Answer

16 m

Explanation

Solution

Given, m1=200kgm_{1}=200\, kg m2=300kgm_{2}=300\, kg s1=36ms_{1}=36 \,m Using law of conservation of momentum, m1v1+m2v2=0m_{1} v_{1}+m_{2} v_{2}=0 or m1v1=m2v2m_{1} v_{1}=-m_{2} v_{2} m1m2=v2v1(i)\frac{m_{1}}{m_{2}}=-\frac{v^{2}}{v_{1}} \ldots (i) Kinetic energy of cart =work done against friction force. For first cart, 12m1v12=fs×s1\frac{1}{2} m_{1} v_{1}^{2}=f_{s} \times s_{1} 12m1v12=μm1g×s1(ii)\frac{1}{2} m_{1} v_{1}^{2}=\mu m_{1} g \times s_{1} \ldots(ii) For second car, 12m2v22=fs×s2=μm2g×s2(iii)\frac{1}{2} m_{2} v_{2}^{2}=f_{s} \times s_{2}=\mu m_{2} g \times s_{2} \ldots (iii) 12m1v1212m2v22=μm1g×s1μm2f×s2\therefore \frac{\frac{1}{2} m_{1} v_{1}^{2}}{\frac{1}{2} m_{2} v_{2}^{2}}=\frac{\mu m_{1} g \times s_{1}}{\mu m_{2} f \times s_{2}} s1s2=v12v22\therefore \frac{s_{1}}{s_{2}}=\frac{v_{1}^{2}}{v_{2}^{2}} Using E (i), s1s2=m22m12=(300200)2=94\frac{s_{1}}{s_{2}}=\frac{m_{2}^{2}}{m_{1}^{2}}=\left(\frac{300}{200}\right)^{2}=\frac{9}{4} 36s2=94\frac{36}{s_{2}}=\frac{9}{4} s2=16ms_{2}=16\, m