Solveeit Logo

Question

Question: Two capillary tubes of same radius r but of lengths l<sub>1</sub> and l<sub>2</sub> are fitted in pa...

Two capillary tubes of same radius r but of lengths l1 and l2 are fitted in parallel to the bottom of a vessel. The pressure head is P. What should be the length of a single tube that can replace the two tubes so that the rate of flow is same as before?

A

(a) l1+l2l_{1} + l_{2}

A

(b) 1l1+1l2\frac{1}{l_{1}} + \frac{1}{l_{2}}

A

(c)l1l2l1+l2\frac{l_{1}l_{2}}{l_{1} + l_{2}}

A

(d) 1l1+l2\frac{1}{l_{1} + l_{2}}

Explanation

Solution

(c)

For parallel combination 1Reff=1R1+1R2\frac{1}{R_{eff}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}

πr48ηl=πr48ηl1+πr48ηl2\frac{\pi r^{4}}{8\eta l} = \frac{\pi r^{4}}{8\eta l_{1}} + \frac{\pi r^{4}}{8\eta l_{2}}1l=1l1+1l26mu6mu6mu6mul=l1l2l1+l2\frac{\mathbf{1}}{\mathbf{l}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{l}_{\mathbf{1}}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{l}_{\mathbf{2}}}\mathbf{\mspace{6mu}\mspace{6mu}\mspace{6mu}\mspace{6mu}}\mathbf{\therefore}\mathbf{l =}\frac{\mathbf{l}_{\mathbf{1}}\mathbf{l}_{\mathbf{2}}}{\mathbf{l}_{\mathbf{1}}\mathbf{+}\mathbf{l}_{\mathbf{2}}}