Solveeit Logo

Question

Physics Question on momentum

Two boys are standing at the ends AA and BB of a ground, where AB=aA B=a. The boy at BB starts running in a direction perpendicular to ABA B with velocity v1v_{1}. The boy at AA starts running simultaneously with velocity vv and catches the other boy in a time tt, where tt is

A

av2+v12\frac{a}{\sqrt{v^{2}+v_{1}^{2}}}

B

a2v2v12\sqrt{\frac{a^{2}}{v^{2}-v_{1}^{2}}}

C

a(vv1)\frac{a}{\left(v-v_{1}\right)}

D

a(v+v1)\frac{a}{\left(v+v_{1}\right)}

Answer

a2v2v12\sqrt{\frac{a^{2}}{v^{2}-v_{1}^{2}}}

Explanation

Solution

Distance covered by boy AA in time tt AC=vtAC = vt Distance covered by boy BB in time tt BC=v1tB C=v_{1} t Using Pythagorus theorem AC2=AB2+BC2A C^{2} =A B^{2}+B C^{2} or (vt)2=a2+(v1t)2(v t)^{2} =a^{2}+\left(v_{1} t\right)^{2} or v2t2v12t2=a2v^{2} t^{2}-v_{1}^{2} t^{2} =a^{2} or t2(v2v12)=a2t^{2}\left(v^{2}-v_{1}^{2}\right) =a^{2} t=a2(v2v12) \therefore t =\sqrt{\frac{a^{2}}{\left(v^{2}-v_{1}^{2}\right)}}