Solveeit Logo

Question

Question: Two bodies of masses m and M are placed a distance d apart. The gravitational potential at the posit...

Two bodies of masses m and M are placed a distance d apart. The gravitational potential at the position where the gravitational field due to them is zero is V, then

A

V=Gd(m+M)V = - \frac { G } { d } ( m + M )

B

V=GmdV = - \frac { G m } { d }

C

V=GMdV = - \frac { G M } { d }

D

V=Gd(m+M)2V = - \frac { G } { d } ( \sqrt { m } + \sqrt { M } ) ^ { 2 }

Answer

V=Gd(m+M)2V = - \frac { G } { d } ( \sqrt { m } + \sqrt { M } ) ^ { 2 }

Explanation

Solution

If PP is the point of zero intensity, then

dx=mM+mdd - x = \frac { \sqrt { m } } { \sqrt { M } + \sqrt { m } } d

Now potential at point P, V=V1+V2V = V _ { 1 } + V _ { 2 } =GMxGMdx= - \frac { G M } { x } - \frac { G M } { d - x }

Substituting the value of x and d – x we get V=Gd(m+M)2V = - \frac { G } { d } ( \sqrt { m } + \sqrt { M } ) ^ { 2 }.