Solveeit Logo

Question

Physics Question on laws of motion

Two bodies of masses 8kg8\, kg are placed at the vertices AA and BB of an equilateral triangle ABCA B C. A third body of mas 2kg2\, kg is placed at the centroid GG of the triangle. If AG=BG=CG=1mAG = BG = CG =1 \,m, where should a fourth body of mass 4kg4 \,kg be placed so that the resultant force on the 2kg2\, kg body is zero?

A

At C

B

At a point PP on the line CG such that PG=12mPG =\frac{1}{\sqrt{2}} m

C

At a point P on the line CG such that PG = 0.5 m

D

At a point P on the line CG such that P G = 2 m

Answer

At a point PP on the line CG such that PG=12mPG =\frac{1}{\sqrt{2}} m

Explanation

Solution

FA=FB=Gm1m2r2=G8×212=G(16)F _{ A } = F _{ B }=\frac{ G m _{1} m _{2}}{ r ^{2}}=\frac{ G 8 \times 2}{1^{2}}= G (16) FAB=FA2+FB2+2FAFBcosθF _{ AB } =\sqrt{ F _{ A }^{2}+ F _{ B }^{2}+2 F _{ A } F _{ B } \cos \theta} =FA2+FB2+2FAFBcos120=\sqrt{ F _{ A }^{2}+ F _{ B }^{2}+2 F _{ A } F _{ B } \cos 120} =FA2+FB2+2FAFB(12)=\sqrt{ F _{ A }^{2}+ F _{ B }^{2}+2 F _{ A } F _{ B }\left(-\frac{1}{2}\right)} FAB=FA=G(16)F _{ AB } = F _{ A }= G (16) For resultant force on 2kg2\, kg to be zero FCG=FAB\overrightarrow{ F }_{ CG }=-\overrightarrow{ F }_{ AB } G2×4X2=G(16)\Rightarrow \frac{ G 2 \times 4}{ X ^{2}}= G (16) X2=2×416=12X ^{2}=\frac{2 \times 4}{16}=\frac{1}{2} X=12X =\frac{1}{\sqrt{2}}