Solveeit Logo

Question

Physics Question on Vectors

Two bodies of mass 11 kg and 33 kg have position vectors i^+2j^+k^\hat i+2\hat j+\hat k and 3i^2j^+k^−3\hat i−2 \hat j+\hat k, respectively. The magnitude of position vector of centre of mass of this system will be similar to the magnitude of vector.

A

i^+2j^+k^\hat i+2\hat j+\hat k

B

3i^2j^+k^−3\hat i−2 \hat j+\hat k

C

2j^+2k^−2\hat j+2\hat k

D

2i^j^+2k^−2\hat i−\hat j+2\hat k

Answer

i^+2j^+k^\hat i+2\hat j+\hat k

Explanation

Solution

rˉcom=m1rˉ1+m2rˉ2m1+m2\bar r_{com}=\frac {m_1\bar r_1+m_2\bar r_2}{ m_1+m_2}

rˉcom=(19)i^+(26)j^+(1+3)k^4\bar r_{com}=\frac {(1−9)\hat i+(2−6)\hat j+(1+3)\hat k}{4}

rˉcom=8i^4j^+4k^4\bar r_{com}=\frac {-8\hat i-4\hat j+4\hat k}{4}
rˉcom=2i^j^+k^\bar r_{com}=−2\hat i−\hat j+\hat k
rˉ=4+1+1|\bar r|=\sqrt {4+1+1}
rˉ=6|\bar r|=\sqrt 6
i^+2j^+k^=6|\hat i+2\hat j+\hat k|=\sqrt 6

So, the correct option is (A): i^+2j^+k^\hat i+2\hat j+\hat k