Solveeit Logo

Question

Question: Two blocks of masses of 40 kg and 30 kg are connected by a weightless string passing over a friction...

Two blocks of masses of 40 kg and 30 kg are connected by a weightless string passing over a frictionless pulley as shown in the figure :

The acceleration of the system would be :

A

0.7 ms20.7 \mathrm {~ms} ^ { - 2 }

B

0.8 ms20.8 \mathrm {~ms} ^ { - 2 }

C

0.6 ms20.6 \mathrm {~ms} ^ { - 2 }

D

0.5 ms20.5 \mathrm {~ms} ^ { - 2 }

Answer

0.7 ms20.7 \mathrm {~ms} ^ { - 2 }

Explanation

Solution

Here m1=40 kgm _ { 1 } = 40 \mathrm {~kg}

m2=30 kgm _ { 2 } = 30 \mathrm {~kg}

θ=30\theta = 30 ^ { \circ }

Let T be the tension in the sting and a be the acceleration of the system.

Their equation of motion are

m1gsin30T=m1am _ { 1 } g \sin 30 ^ { \circ } - T = m _ { 1 } a ….. (i)

Tm2gsin30=m2aT - m _ { 2 } g \sin 30 = m _ { 2 } a ….. (ii)

Adding (i) and (ii) we get

(m1+m2)a=(m1m2)gsin30\left( m _ { 1 } + m _ { 2 } \right) a = \left( m _ { 1 } - m _ { 2 } \right) g \sin 30 ^ { \circ }

Substituting the given values we get

(40+30)a=(4030)×9.8×12=49( 40 + 30 ) a = ( 40 - 30 ) \times 9.8 \times \frac { 1 } { 2 } = 49

a=4970=0.7 ms2a = \frac { 49 } { 70 } = 0.7 \mathrm {~ms} ^ { - 2 }