Solveeit Logo

Question

Question: Two blocks of mass m<sub>1</sub> and m<sub>2</sub> joined to a non deformed spring of length l<sub>0...

Two blocks of mass m1 and m2 joined to a non deformed spring of length l0 and stiffness K as shown in fig. If a force F is applied on block of mass m2. Find the maximum separation between the blocks.

A

l0 + m1 Fk(m1+m2)\frac { \mathrm { m } _ { 1 } \mathrm {~F} } { \mathrm { k } \left( \mathrm { m } _ { 1 } + \mathrm { m } _ { 2 } \right) }

B

l0 + m2 Fk(m1+m2)\frac { m _ { 2 } \mathrm {~F} } { \mathrm { k } \left( \mathrm { m } _ { 1 } + \mathrm { m } _ { 2 } \right) }

C

l0 + 2 m2 F m1+m2\frac { 2 \mathrm {~m} _ { 2 } \mathrm {~F} } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } }

D

l0 + 2 m1 F m1+m2\frac { 2 \mathrm {~m} _ { 1 } \mathrm {~F} } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } }

Answer

l0 + 2 m1 F m1+m2\frac { 2 \mathrm {~m} _ { 1 } \mathrm {~F} } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } }

Explanation

Solution

x1 and x2 be the maximum displacement in m1 and m2 respectively.

aCOM = Fm1+m2\frac { \mathrm { F } } { \mathrm { m } _ { 1 } + \mathrm { m } _ { 2 } }

12k(x1+x2)2=m1 F m1+m2x1+(Fm2 F m1+m2)x2\frac { 1 } { 2 } \mathrm { k } \left( \mathrm { x } _ { 1 } + \mathrm { x } _ { 2 } \right) ^ { 2 } = \frac { \mathrm { m } _ { 1 } \mathrm {~F} } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } \mathrm { x } _ { 1 } + \left( \mathrm { F } - \frac { \mathrm { m } _ { 2 } \mathrm {~F} } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } \right) \mathrm { x } ^ { 2 }

= m1 F m1+m2\frac { \mathrm { m } _ { 1 } \mathrm {~F} } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } (x1 + x2)

or

x1 + x2 = 2m1Fk(m1+m2)\frac { 2 m _ { 1 } F } { k \left( m _ { 1 } + m _ { 2 } \right) }

Thus maximum separation = l0 + x1 + x2

= l0 + 2m1Fk(m1+m2)\frac { 2 m _ { 1 } F } { k \left( m _ { 1 } + m _ { 2 } \right) }