Solveeit Logo

Question

Question: Two blocks A and B of mass m and 2m are connected by a mass less spring of force constant k. They ar...

Two blocks A and B of mass m and 2m are connected by a mass less spring of force constant k. They are placed on a smooth horizontal plane. Spring is stretched by an amount x and then released. The relative velocity of the blocks when the spring comes to its natural length is –

A

(3k2 m)x\left( \sqrt { \frac { 3 \mathrm { k } } { 2 \mathrm {~m} } } \right) \mathrm { x }

B

(2k3 m)x\left( \sqrt { \frac { 2 \mathrm { k } } { 3 \mathrm {~m} } } \right) \mathrm { x }

C

2kxm\sqrt { \frac { 2 \mathrm { kx } } { \mathrm { m } } }

D

3 km2x\sqrt { \frac { 3 \mathrm {~km} } { 2 \mathrm { x } } }

Answer

(3k2 m)x\left( \sqrt { \frac { 3 \mathrm { k } } { 2 \mathrm {~m} } } \right) \mathrm { x }

Explanation

Solution

From conservation of mechanical energy

12\frac { 1 } { 2 } kx2 = 12\frac { 1 } { 2 } μvr2\mu \mathrm { v } _ { \mathrm { r } } ^ { 2 } ... (1)

Here, m = reduced mass of the blocks

= (m)(2m)m+2m\frac { ( m ) ( 2 m ) } { m + 2 m } = 23 m\frac { 2 } { 3 } \mathrm {~m}

and vr = relative velocity of the two.

Substituting in Equation (1), we get

kx2 = mvr2\operatorname { mv } _ { \mathrm { r } } ^ { 2 }

\ vr = (3k2 m)x\left( \sqrt { \frac { 3 \mathrm { k } } { 2 \mathrm {~m} } } \right) \mathrm { x }