Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

Two balls, having linear momenta ρ1=pi^\rho_1 = p \widehat{i} and ρ2=pi^,\rho_2 = - p \widehat{i}, undergo a collision in free space. There is no external force acting on the balls. Let ρ2andρ2\rho_2 ' \, and \, \rho_2 '. be their final momenta. The following option figure (s) is (are) not allowed for any non-zero value of ρ,a1,a2,b1,b2,c1andc2 \rho, a_1, a_2, b_1, b_2, c_1 \, and c_2.

A

ρ1=a1i^+b1j^+c1k^,ρ2=a2i^+b2j^\rho_1' = a_1 \widehat{ i } + b_1 \widehat{ j} + c_1 \widehat{k}, \rho_2 = a_2 \widehat{ i } + b_2 \widehat{ j}

B

ρ1=c1k^,ρ2=c2k^\rho_1 ' = c_1 \widehat{ k} , \rho_2 = c_2 \widehat{ k}

C

ρ1=a1a1^i^+b1j^+c1k^,ρ2=a2i^+b2j^c1k^\rho_1' = a_1 \widehat{ a_1 } \widehat{ i} + b_1 \widehat{ j } + c_1 \widehat{k} , \rho_2 = a_2 \widehat{ i } + b_2 \widehat{ j} - c_1 \widehat{ k}

D

ρ1=a1i^+b1j^+c1k^,ρ2=a2i^+b1j^ \rho_1 ' = a_1 \widehat{i} + b_1 \widehat{j} + c_1 \widehat{k}, \rho_2 = a_2 \widehat{i} + b_1 \widehat{j}

Answer

ρ1=a1i^+b1j^+c1k^,ρ2=a2i^+b1j^ \rho_1 ' = a_1 \widehat{i} + b_1 \widehat{j} + c_1 \widehat{k}, \rho_2 = a_2 \widehat{i} + b_1 \widehat{j}

Explanation

Solution

Initial momentum of the system ρ1+ρ2=0\rho_1 + \rho_2 = 0
\therefore Final momentum ρ1+ρ2\rho_1 ' + \rho_2 ' should also be zero
Option (b) is allowed because if we put c1=c20,c_1 = - c_2 \ne 0,
ρ1+ρ2\rho_1 ' + \rho_2 ' W'H t>e zero. Similary, we can check other options.
\therefore Correct options are (a) and (d).