Solveeit Logo

Question

Physics Question on projectile motion

Two balls are projected simultaneously in the same vertical plane from the same point with velocities V1{{V}_{1}} and V2{{V}_{2}} with angles θ1{{\theta }_{1}} and θ2{{\theta }_{2}} respectively with the horizontal. If , the path of one ball as seen from the position of other ball is:

A

parabola

B

horizontal straight line

C

vertical straight line

D

straight line making 4545{}^\circ with the vertical

Answer

vertical straight line

Explanation

Solution

For the ball projected with velocity V1{{V}_{1}} at an angle θ1{{\theta }_{1}} with horizontal line, the horizontal distance covered after t time. x1=V1cosθ1t{{x}_{1}}={{V}_{1}}\cos {{\theta }_{1}}t Similarly, for second ball throw with velocity V2{{V}_{2}} at an angle θ2{{\theta }_{2}} with horizontal, horizontal distance covered after time t. x2=V2cosθ2t{{x}_{2}}={{V}_{2}}\cos {{\theta }_{2}}t The vertical distances covered are y1=V1sinθ1t12gt2{{y}_{1}}={{V}_{1}}\sin {{\theta }_{1}}t-\frac{1}{2}g{{t}^{2}} and y2=V2sinθ2t12gt2{{y}_{2}}={{V}_{2}}\sin {{\theta }_{2}}t-\frac{1}{2}g{{t}^{2}} \therefore x2x1=(V2cosθ2V1cosθ1)t{{x}_{2}}-{{x}_{1}}=({{V}_{2}}\cos {{\theta }_{2}}-{{V}_{1}}\cos {{\theta }_{1}})t and y2y1=(V2sinθ2V1sinθ1)t{{y}_{2}}-{{y}_{1}}=({{V}_{2}}\sin {{\theta }_{2}}-{{V}_{1}}\sin {{\theta }_{1}})t \therefore y2y1x2x1=V2sinθ2V1sinθ1V2cosθ2V1cosθ1\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{{{V}_{2}}\sin {{\theta }_{2}}-{{V}_{1}}\sin {{\theta }_{1}}}{{{V}_{2}}\cos {{\theta }_{2}}-{{V}_{1}}\cos {{\theta }_{1}}} but V1cosθ1=V2cosθ2{{V}_{1}}\cos {{\theta }_{1}}={{V}_{2}}\cos {{\theta }_{2}} \therefore y2y1x2x1=V2sinθ2V1sinθ10=\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{{{V}_{2}}\sin {{\theta }_{2}}-{{V}_{1}}\sin {{\theta }_{1}}}{0}=\infty \Rightarrow x2x1=0{{x}_{2}}-{{x}_{1}}=0 and y2y1={{y}_{2}}-{{y}_{1}}=\infty This means line joining the position of particles after time t will be a straight line and parallel to the y-axis.