Solveeit Logo

Question

Question: Two adjacent sides of a parallelogram are represented by the two vectors \(\widehat{i} + 2\widehat{j...

Two adjacent sides of a parallelogram are represented by the two vectors i^+2j^+3k^\widehat{i} + 2\widehat{j} + 3\widehat{k} and3i^2j^+k^3\widehat{i} - 2\widehat{j} + \widehat{k}. What is the area of parallelogram

A

8

B

838\sqrt{3}

C

383\sqrt{8}

D

192

Answer

8

Explanation

Solution

Area of parallelogram

=A×B= \overset{\rightarrow}{A} \times \overset{\rightarrow}{B}

=(i^+2j^+3k^)×(3i^2j^+k^)= (\widehat{i} + 2\widehat{j} + 3\widehat{k}) \times (3\widehat{i} - 2\widehat{j} + \widehat{k})

\widehat{i} & \widehat{j} & \widehat{k} \\ 1 & 2 & 3 \\ 3 & - 2 & 1 \end{matrix} \right| = (8)\widehat{i} + (8)\widehat{j} - (8)\widehat{k}$$ Magnitude $= \sqrt{64 + 64 + 64}$=$8\sqrt{3}$