Solveeit Logo

Question

Question: Twenty persons arrive in a town having 3 hotels A, B and C. If each person randomly chooses one of t...

Twenty persons arrive in a town having 3 hotels A, B and C. If each person randomly chooses one of these hotels, then what is the probability that atleast two of them go in hotel A, atleast one in hotel B and atleast one in hotel C. (each hotel has capacity for more than 20 guests)

A

1-(12.22042320\frac{12.2^{20}-42}{3^{20}})

B

1-(2201319\frac{2^{20}-1}{3^{19}})

C

1-(10.22040320\frac{10.2^{20}-40}{3^{20}})

D

1-(13.22043320\frac{13.2^{20}-43}{3^{20}})

Answer

1-(13.22043320)\left(\frac{13.2^{20}-43}{3^{20}}\right)

Explanation

Solution

The total number of ways to distribute 20 persons into 3 hotels is 3203^{20}. Let EE be the event that at least two persons go to hotel A (nA2n_A \ge 2), at least one to hotel B (nB1n_B \ge 1), and at least one to hotel C (nC1n_C \ge 1). It is easier to calculate the probability of the complement event EcE^c. EcE^c is the event that (nA<2n_A < 2) OR (nB=0n_B = 0) OR (nC=0n_C = 0). Let CAC_A be nA<2n_A < 2, CBC_B be nB=0n_B = 0, and CCC_C be nC=0n_C = 0. Using the Principle of Inclusion-Exclusion: Ec=CA+CB+CC(CACB+CACC+CBCC)+CACBCC|E^c| = |C_A| + |C_B| + |C_C| - (|C_A \cap C_B| + |C_A \cap C_C| + |C_B \cap C_C|) + |C_A \cap C_B \cap C_C|.

  • CB=220|C_B| = 2^{20} (persons choose A or C).
  • CC=220|C_C| = 2^{20} (persons choose A or B).
  • CA|C_A|: (nA=0n_A=0 or nA=1n_A=1).
    • nA=0n_A=0: 2202^{20} ways (choose B or C).
    • nA=1n_A=1: (201)×219\binom{20}{1} \times 2^{19} ways (choose 1 for A, rest for B or C). CA=220+20×219=220+10×220=11×220|C_A| = 2^{20} + 20 \times 2^{19} = 2^{20} + 10 \times 2^{20} = 11 \times 2^{20}.
  • CBCC|C_B \cap C_C|: nB=0n_B=0 and nC=0    nA=20n_C=0 \implies n_A=20. Only 1 way.
  • CACB|C_A \cap C_B|: (nA<2n_A < 2) and (nB=0n_B=0). This means (nA=0,nB=0n_A=0, n_B=0) or (nA=1,nB=0n_A=1, n_B=0).
    • nA=0,nB=0    nC=20n_A=0, n_B=0 \implies n_C=20: 1 way.
    • nA=1,nB=0    nC=19n_A=1, n_B=0 \implies n_C=19: (201)×1=20\binom{20}{1} \times 1 = 20 ways. CACB=1+20=21|C_A \cap C_B| = 1 + 20 = 21.
  • CACC|C_A \cap C_C|: Similarly, CACC=21|C_A \cap C_C| = 21.
  • CACBCC|C_A \cap C_B \cap C_C|: (nA<2n_A < 2) and (nB=0n_B=0) and (nC=0n_C=0). This implies nA=20n_A=20, which contradicts nA<2n_A < 2. So, 0 ways. Ec=(11×220)+220+220(21+21+1)+0=13×22043|E^c| = (11 \times 2^{20}) + 2^{20} + 2^{20} - (21 + 21 + 1) + 0 = 13 \times 2^{20} - 43. P(Ec)=13×22043320P(E^c) = \frac{13 \times 2^{20} - 43}{3^{20}}. P(E)=1P(Ec)=113×22043320P(E) = 1 - P(E^c) = 1 - \frac{13 \times 2^{20} - 43}{3^{20}}.