Solveeit Logo

Question

Question: Triangles ABC and DEF have sides of lengths a, b, c and d, e, f respectively (symbols are as per usu...

Triangles ABC and DEF have sides of lengths a, b, c and d, e, f respectively (symbols are as per usual notations). a, b, c and d, e, f satisfy the relation a+b+c\sqrt { a + b + c } d+e+f\sqrt { \mathrm { d } + \mathrm { e } + \mathrm { f } }

= ad+be+cf\sqrt { \mathrm { ad } } + \sqrt { \mathrm { be } } + \sqrt { \mathrm { cf } }, then

A

Both the triangles ABC and DEF must be isosceles but not equilateral.

B

Both the triangles ABC and DEF must be equilateral.

C

Both the triangles ABC and DEF must be simillar but may not be congruent.

D

Both the triangles ABC and DEF must be similar

Answer

Both the triangles ABC and DEF must be similar

Explanation

Solution

(ad+bc+cf)2( \sqrt { \mathrm { ad } } + \sqrt { \mathrm { bc } } + \sqrt { \mathrm { cf } } ) ^ { 2 } ≤ (a + b + c)(d + e + f)

ad+bc+cf\sqrt { \mathrm { ad } } + \sqrt { \mathrm { bc } } + \sqrt { \mathrm { cf } }(a+b+c)( \sqrt { a + b + c } ) (d+e+f)( \sqrt { d + e + f } )

The equality will take place if

\ triangle ABC and DEF must be similar.