Solveeit Logo

Question

Question: The exact value of $\frac{96 \sin 80^\circ \sin 65^\circ \sin 35^\circ}{\sin 20^\circ + \sin 50^\cir...

The exact value of 96sin80sin65sin35sin20+sin50+sin110\frac{96 \sin 80^\circ \sin 65^\circ \sin 35^\circ}{\sin 20^\circ + \sin 50^\circ + \sin110^\circ} is equal to

A

12

B

24

C

-12

D

48

Answer

24

Explanation

Solution

Explanation of the Solution:

The problem asks for the exact value of the trigonometric expression 96sin80sin65sin35sin20+sin50+sin110\frac{96 \sin 80^\circ \sin 65^\circ \sin 35^\circ}{\sin 20^\circ + \sin 50^\circ + \sin110^\circ}.

  1. Simplify the Numerator:

Let the numerator be N=96sin80sin65sin35N = 96 \sin 80^\circ \sin 65^\circ \sin 35^\circ. Using the complementary angle identity sinx=cos(90x)\sin x = \cos(90^\circ - x):

  • sin80=cos(9080)=cos10\sin 80^\circ = \cos(90^\circ - 80^\circ) = \cos 10^\circ
  • sin65=cos(9065)=cos25\sin 65^\circ = \cos(90^\circ - 65^\circ) = \cos 25^\circ
  • sin35=cos(9035)=cos55\sin 35^\circ = \cos(90^\circ - 35^\circ) = \cos 55^\circ

So, the numerator becomes N=96cos10cos25cos55N = 96 \cos 10^\circ \cos 25^\circ \cos 55^\circ.

  1. Simplify the Denominator:

Let the denominator be D=sin20+sin50+sin110D = \sin 20^\circ + \sin 50^\circ + \sin 110^\circ. First, check the sum of the angles: 20+50+110=18020^\circ + 50^\circ + 110^\circ = 180^\circ. For angles A,B,CA, B, C such that A+B+C=180A+B+C = 180^\circ, the following identity holds: sinA+sinB+sinC=4cos(A2)cos(B2)cos(C2)\sin A + \sin B + \sin C = 4 \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right). Applying this identity with A=20A=20^\circ, B=50B=50^\circ, C=110C=110^\circ:

  • A2=202=10\frac{A}{2} = \frac{20^\circ}{2} = 10^\circ
  • B2=502=25\frac{B}{2} = \frac{50^\circ}{2} = 25^\circ
  • C2=1102=55\frac{C}{2} = \frac{110^\circ}{2} = 55^\circ

So, the denominator becomes D=4cos10cos25cos55D = 4 \cos 10^\circ \cos 25^\circ \cos 55^\circ.

  1. Calculate the Ratio:

Now, substitute the simplified numerator and denominator back into the original expression: 96sin80sin65sin35sin20+sin50+sin110=96cos10cos25cos554cos10cos25cos55\frac{96 \sin 80^\circ \sin 65^\circ \sin 35^\circ}{\sin 20^\circ + \sin 50^\circ + \sin110^\circ} = \frac{96 \cos 10^\circ \cos 25^\circ \cos 55^\circ}{4 \cos 10^\circ \cos 25^\circ \cos 55^\circ} Since 10,25,5510^\circ, 25^\circ, 55^\circ are acute angles, their cosines are non-zero. We can cancel the common term cos10cos25cos55\cos 10^\circ \cos 25^\circ \cos 55^\circ from the numerator and the denominator. =964=24= \frac{96}{4} = 24

The exact value of the expression is 24.