Question
Question: The exact value of $\frac{96 \sin 80^\circ \sin 65^\circ \sin 35^\circ}{\sin 20^\circ + \sin 50^\cir...
The exact value of sin20∘+sin50∘+sin110∘96sin80∘sin65∘sin35∘ is equal to

12
24
-12
48
24
Solution
Explanation of the Solution:
The problem asks for the exact value of the trigonometric expression sin20∘+sin50∘+sin110∘96sin80∘sin65∘sin35∘.
- Simplify the Numerator:
Let the numerator be N=96sin80∘sin65∘sin35∘. Using the complementary angle identity sinx=cos(90∘−x):
- sin80∘=cos(90∘−80∘)=cos10∘
- sin65∘=cos(90∘−65∘)=cos25∘
- sin35∘=cos(90∘−35∘)=cos55∘
So, the numerator becomes N=96cos10∘cos25∘cos55∘.
- Simplify the Denominator:
Let the denominator be D=sin20∘+sin50∘+sin110∘. First, check the sum of the angles: 20∘+50∘+110∘=180∘. For angles A,B,C such that A+B+C=180∘, the following identity holds: sinA+sinB+sinC=4cos(2A)cos(2B)cos(2C). Applying this identity with A=20∘, B=50∘, C=110∘:
- 2A=220∘=10∘
- 2B=250∘=25∘
- 2C=2110∘=55∘
So, the denominator becomes D=4cos10∘cos25∘cos55∘.
- Calculate the Ratio:
Now, substitute the simplified numerator and denominator back into the original expression: sin20∘+sin50∘+sin110∘96sin80∘sin65∘sin35∘=4cos10∘cos25∘cos55∘96cos10∘cos25∘cos55∘ Since 10∘,25∘,55∘ are acute angles, their cosines are non-zero. We can cancel the common term cos10∘cos25∘cos55∘ from the numerator and the denominator. =496=24
The exact value of the expression is 24.