Question
Question: If 3 sin α = 5 sin β, then $\frac{tan \frac{\alpha+\beta}{2}}{tan \frac{\alpha-\beta}{2}}$ =...
If 3 sin α = 5 sin β, then tan2α−βtan2α+β =

A
1
B
2
C
3
D
4
Answer
4
Explanation
Solution
Given the equation 3sinα=5sinβ.
We can rewrite this as: sinβsinα=35
Apply the Componendo and Dividendo rule: sinα−sinβsinα+sinβ=5−35+3 sinα−sinβsinα+sinβ=28=4
Now, use the sum-to-product and difference-to-product trigonometric identities: sinA+sinB=2sin(2A+B)cos(2A−B) sinA−sinB=2cos(2A+B)sin(2A−B)
Substitute these into the equation: 2cos(2α+β)sin(2α−β)2sin(2α+β)cos(2α−β)=4
Simplify the expression: (cos(2α+β)sin(2α+β))⋅(sin(2α−β)cos(2α−β))=4
This can be written in terms of tangent and cotangent: tan(2α+β)⋅cot(2α−β)=4
Since cotx=tanx1: tan(2α+β)⋅tan(2α−β)1=4
Therefore, tan(2α−β)tan(2α+β)=4