Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Total number of solutions of sin4x+cos4x=sinxcosxsin^4x +cos^4x = sin x cos x is [0,2π][0,2\pi] is equal to

A

2

B

4

C

6

D

8

Answer

2

Explanation

Solution

sin4x+cos4x=sinxcosxsin^4 \,x + cos^4 \,x = sin \,x \,cos\,x
(sin2x+cos2x)22sin2xcos2x=sinxcosx\Rightarrow (sin^2\,x + cos^2 \,x)^2 - 2\,sin^2\,x \cdot cos^2\,x = sin\,x \cdot cos\,x
1sin22x2=sin2x2\Rightarrow 1- \frac{ sin^2 \,2x}{2} = \frac{sin\,2x}{2}
sin22x+sin2x2=0\Rightarrow sin^2\, 2x + sin\,2x - 2 = 0
(sin2x+2)(sin2x1)=0\Rightarrow ( sin \,2x + 2) ( sin \,2x - 1) = 0
sin2x=1\Rightarrow sin \,2x = 1
2x=(4n+1)π2\Rightarrow 2x = (4n + 1) \frac{\pi}{2}
x=(4n+1)π4\Rightarrow x = (4n + 1) \frac{\pi}{4}
x=π4,5π4\Rightarrow x =\frac{\pi}{4}, \frac{5\pi}{4}