Solveeit Logo

Question

Question: Total number of critical points of f(x) = \(\left| \frac{2 - x}{x^{2}} \right|\)are equal to...

Total number of critical points of f(x) = 2xx2\left| \frac{2 - x}{x^{2}} \right|are equal to

A

3

B

2

C

1

D

4

Answer

2

Explanation

Solution

f(x) = {2xx2,x<2x2x2,x2\left\{ \begin{array} { l l } \frac { 2 - x } { x ^ { 2 } } , & x < 2 \\ \frac { x - 2 } { x ^ { 2 } } , & x \geq 2 \end{array} \right.

⇒ f(x) =

f '(2 − 0) = − 14\frac { 1 } { 4 } , f '(2 + 0) = 14\frac { 1 } { 4 }.

Thus f(x) is non diff. at x = 2. If f (x) = 0

4x3=1x2\frac { 4 } { x ^ { 3 } } = \frac { 1 } { x ^ { 2 } } ⇒ x = 4.

Thus there are two critical points namely x = 2, 4.

(Note that x = 0 is not the critical point as x = 0 is not in the domain).