Solveeit Logo

Question

Mathematics Question on Combinations

Total number of books is 2n+12n + 1. One is allowed to select a minimum of the one book and a maximum of nn books. If total number of selections if 6363, then value of nn is :

A

3

B

6

C

2

D

none of these

Answer

3

Explanation

Solution

Since (1+x)2n+1=C0+C1x++Cnxn(1+x)^{2 n+1}=C_{0}+C_{1} x+\ldots+ C_{n} x^{n} +Cn+1xn+1++x2n+1+C_{n+1} x^{n+1}+\ldots \ldots+ x^{2 n+1} =2(C0+C1+.Cnx2)=2\left(C_{0}+C_{1}+\ldots . C_{n} x^{2}\right) put x=1x=1 (1+1)2n+1=2(C0+C1++Cn)(1+1)^{2 n+1}=2\left(C_{0}+C_{1}+\ldots \ldots+C_{n}\right) 22n=(c0+C1+C2++Cn\Rightarrow 2^{2 n}=\left(c_{0}+C_{1}+C_{2}+\ldots+C_{n}\right. 22n1=63\Rightarrow 2^{2 n}-1=63 22n=6422n=26\Rightarrow 2^{2 n}=64 \Rightarrow 2^{2 n}=2^{6} 2n=6n=3\Rightarrow 2 n=6 \Rightarrow n=3