Solveeit Logo

Question

Question: Total charge carried by all the $\text{Ca}^{2+}$ ions present in 518 mL of 0.01 N $\text{CaCl}_2$ so...

Total charge carried by all the Ca2+\text{Ca}^{2+} ions present in 518 mL of 0.01 N CaCl2\text{CaCl}_2 solution is n × 10210^2 coulombs. What is value of n? (Nearest integer)

Answer

5

Explanation

Solution

To find the total charge carried by all the Ca2+\text{Ca}^{2+} ions, we need to determine the number of moles of Ca2+\text{Ca}^{2+} ions and then multiply by the charge per mole of Ca2+\text{Ca}^{2+} ions.

  1. Calculate the molarity of CaCl2\text{CaCl}_2 solution: Normality (N) is related to Molarity (M) by the valency factor (z). For CaCl2\text{CaCl}_2, it dissociates as CaCl2Ca2++2Cl\text{CaCl}_2 \rightarrow \text{Ca}^{2+} + 2\text{Cl}^{-}. The valency factor (z) for CaCl2\text{CaCl}_2 (in terms of Ca2+\text{Ca}^{2+} ions contributing to charge) is 2. Molarity (M)=Normality (N)z\text{Molarity (M)} = \frac{\text{Normality (N)}}{\text{z}} M=0.01 N2=0.005 M\text{M} = \frac{0.01 \text{ N}}{2} = 0.005 \text{ M}

  2. Calculate the moles of CaCl2\text{CaCl}_2 in the given volume: Volume of solution = 518 mL = 0.518 L Moles of CaCl2=Molarity×Volume (in L)\text{Moles of CaCl}_2 = \text{Molarity} \times \text{Volume (in L)} Moles of CaCl2=0.005 mol/L×0.518 L=0.00259 mol\text{Moles of CaCl}_2 = 0.005 \text{ mol/L} \times 0.518 \text{ L} = 0.00259 \text{ mol}

  3. Calculate the moles of Ca2+\text{Ca}^{2+} ions: From the dissociation equation CaCl2Ca2++2Cl\text{CaCl}_2 \rightarrow \text{Ca}^{2+} + 2\text{Cl}^{-}, 1 mole of CaCl2\text{CaCl}_2 produces 1 mole of Ca2+\text{Ca}^{2+} ions. So, Moles of Ca2+=0.00259 mol\text{Moles of Ca}^{2+} = 0.00259 \text{ mol}

  4. Calculate the total charge carried by Ca2+\text{Ca}^{2+} ions: Each Ca2+\text{Ca}^{2+} ion carries a charge of +2 elementary charges. The charge carried by one mole of Ca2+\text{Ca}^{2+} ions is 2 Faradays (2F). 1 Faraday (F) = 96485 C/mol (Coulombs per mole of elementary charge). Total charge=Moles of Ca2+×(Charge per mole of Ca2+)\text{Total charge} = \text{Moles of Ca}^{2+} \times (\text{Charge per mole of Ca}^{2+}) Total charge=0.00259 mol×(2×96485 C/mol)\text{Total charge} = 0.00259 \text{ mol} \times (2 \times 96485 \text{ C/mol}) Total charge=0.00259×192970 C\text{Total charge} = 0.00259 \times 192970 \text{ C} Total charge=500.8923 C\text{Total charge} = 500.8923 \text{ C}

  5. Express the charge in the required format and find n: The total charge is given as n×102\text{n} \times 10^2 coulombs. n×102=500.8923\text{n} \times 10^2 = 500.8923 n=500.8923100\text{n} = \frac{500.8923}{100} n=5.008923\text{n} = 5.008923

  6. Round n to the nearest integer: The nearest integer to 5.008923 is 5.

The final answer is 5.

Explanation of the solution:

  1. Convert Normality to Molarity: For CaCl2\text{CaCl}_2, the valency factor is 2. Molarity = Normality/2 = 0.01/2 = 0.005 M.
  2. Calculate Moles of CaCl2\text{CaCl}_2: Moles = Molarity × Volume (in L) = 0.005 M × 0.518 L = 0.00259 mol.
  3. Determine Moles of Ca2+\text{Ca}^{2+}: Since 1 mole of CaCl2\text{CaCl}_2 yields 1 mole of Ca2+\text{Ca}^{2+}, moles of Ca2+\text{Ca}^{2+} = 0.00259 mol.
  4. Calculate Total Charge: Each mole of Ca2+\text{Ca}^{2+} carries a charge of 2 Faradays (2F). Using F = 96485 C/mol, Total charge = 0.00259 mol × (2 × 96485 C/mol) = 500.8923 C.
  5. Find n: Expressing the charge as n × 10² C, we get n × 100 = 500.8923, so n = 5.008923.
  6. Nearest Integer: The nearest integer value for n is 5.